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Abstract Urbanisation generates powerful agglomeration benefits but also severe con-

gestion externalities that require regulation and public goods provision. In developing

megacities, governments lack the fiscal and enforcement capacity to implement textbook

solutions. In their absence, unregulated private provision emerges across sectors such as

waste, sanitation, water, and transport, leaving externalities largely unaddressed. What

can economics offer cities that cannot implement textbook policies? We study whether

limited, feasible regulation can leverage informal markets to deliver public services at

scale, focusing on trash collection in Accra, Ghana. Using novel data, we document an

imperfect but functioning market: households pay informal tricycle collectors for door-

to-door collection, yet prices remain too high for universal access, and final disposal

occurs largely at illegal dumpsites. We identify a single feasible policy lever—subsidies

for formal, environmentally controlled disposal—and evaluate it using a new structural

model of urban waste collection and disposal. To estimate the model, we combine survey

experiments to elicit household demand, a custom app to record transactions and tri-

cycle routes, and a field experiment randomising dumping fees. Counterfactual results

show that a modest subsidy achieves roughly 80% of the efficient outcome, substan-

tially reducing environmental damages while generating larger welfare gains at lower

cost than planned infrastructure expansion. These findings demonstrate that even in

very low-capacity environments, limited price-based regulation can align informal pri-

vate initiative with social objectives.
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1 Introduction

Urbanisation generates classic Pigouvian problems—pollution, the spread of disease,

crime, and traffic congestion (Bryan et al. 2020)—which, if left unchecked, impose large

welfare losses. Correcting these externalities ordinarily calls for some mix of pricing, pro-

hibitions, quantity restrictions, and the public provision of urban goods and services.1 Yet

weak enforcement capacity undermines Pigouvian taxation (Ashraf et al. 2016) and be-

havioural bans, while low fiscal capacity constrains direct public provision. Consequently,

in many developing cities, unregulated markets for environmental public services—most

notably sanitation and solid waste management—have expanded rapidly, displacing what

should be a public goods problem onto private provision.2 These markets create private

value but do little to internalise social costs. The twin constraints of fiscal and regulatory

weakness raise two central questions. In the face of limited enforcement capacity, what

regulatory arrangements might sustain socially efficient levels of environmental quality?

And, given fiscal constraints, what are the aggregate welfare costs and benefits of such ar-

rangements? We take these questions to the case of trash disposal in Accra, Ghana.

In the Greater Accra Metropolitan Area, door-to-door trash collection is largely de-

livered by unregulated private actors. The government licenses one integrated company3

to manage formal collection and engineered disposal sites (transfer stations and sanitary

landfills). However, this utility reaches only a small share of households. Instead, over

70% of waste is collected by informal collectors on motorised tricycles (known locally as

Borla Taxis), who travel the city daily seeking customers and dispose at transfer stations

or illegal dumpsites. The market has expanded service rates by 37% in the last decade.

Yet it relies heavily on uncontrolled dumpsites, where pollution goes unmitigated.

1Examples of these policies abound in the transportation sector. Kreindler 2024 explores peak-

spreading pricing policies to regulate traffic in Bangalore, Conwell 2025 studies how to improve the

market for informal privatised transit in Cape Town, several papers examine the delivery of public trans-

portation networks (Balboni et al. 2020), (Kreindler et al. 2023), (Tsivanidis 2023), (Zárate 2024), and

how private and public provision interact (Björkegren et al. 2025).
2Decentralised, private on site approaches to sanitation such as ventilated pit latrines are common in

many lower-income cities that lack waterborne sewerage systems. Houde et al. 2024, and Deutschmann

et al. 2024 provide details on the market for sanitation services in Dakar, analyse how these markets fail,

and explore market improvements to increase service adoption.
3In door-to-door collection, a small set of companies licensed by the municipal assemblies co-exist.

Still, formal collection is largely dominated by one company, which also manages disposal.
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In this paper, we make three contributions. First, we collect novel primary data

on an informal market that has not been quantitatively studied before. The data allow

us to document, for the first time, the structure of informal waste markets. Second, we

build and estimate a structural model of urban waste collection and disposal, combining

discrete choice demand systems for households and collectors, who face commuting fric-

tions, with oligopolistic pricing among disposal sites. For identification of the household

demand system, we leverage BDM (Becker et al. 1964) and take-it-or-leave-it (TIOLI)

demand elicitation exercises, and a stated preference experiment. To estimate collectors’

semi-elasticities and disposal sites’ costs, we use several strategies. We first leverage our

survey micro-data and aggregate market statistics as in Imbens and Lancaster 1994, to

find the demand and cost parameters that rationalise disposal prices, sites’ market shares,

commuting routes, and clear the market for trash disposal and collection. We comple-

ment this strategy with a field experiment, subsidising disposal at transfer stations, and a

standard gravity equation that yields similar commuting cost estimates. Third, we quan-

tify the welfare effects of feasible regulation, by evaluating how the market responds to

public intervention in the form of price-based policies and the construction of new waste

facilities. Counterfactual simulations show that halving fees at formal disposal sites re-

duces environmental damages by 35%, achieving 84% of the gains from a social planner

benchmark. Benefits exceed implementation costs. Light-touch price regulation is more

effective and less costly than the construction of waste infrastructure as the government

has planned it.

Our novel primary data collection allows us to overcome the data availability chal-

lenges posed by informality in waste markets of low-income cities. In our setting, no up-

to-date data existed beyond aggregated census information on household disposal choices

and an assessment on the number of tricycle collectors operating in the region.4 We de-

signed a series of primary data collection exercises that allow us to generate novel insights

into solid waste management in developing cities and estimate our model. We conduct

a survey of 1,800 households across 150 enumeration areas (EA), documenting collection

and disposal choices. To assess the impact of neighbourhood waste pollution, we took

6,000 images of gutters and drains near surveyed households, which we classify manually,

according to the amount of waste detected. We mapped the location of all disposal sites in

the city, and gathered observational data on collector flows at each site. Leveraging these,

4Ghana Population and Housing Census, 2010, and 2021 (Ghana Statistical Service).
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we ran a survey of 400 Borla Taxis covering the entire metropolitan area. This allowed us

to construct collection-disposal commuting routes and learn about the characteristics of

disposal sites –including those operating illegally. We designed a smartphone application

that collectors were invited to use for a period of two weeks to one month. They were

incentivised to register their collection transactions, providing us with geolocated, times-

tamped transaction data. This detailed information allows for a careful description of the

characteristics of the waste collection market, and for validation of our survey data.

Four descriptive facts on the market guide our model. Firstly, access to formal col-

lection trucks and containers is restricted spatially, while Borla Taxis serve most areas in

the city. Borla Taxis charge a lower price and provide collection at a higher frequency.

We observe that households predominantly choose Borla Taxi services when available.

Secondly, despite the large expansion of the collection market, local waste pollution re-

mains a challenge. We estimate that a 1% increase in the count of trash objects in gutters

and drains is associated with a 0.075 percentage point increase in the share reporting

flooding, 0.082 in malaria, and 0.024 in diarrhoea (among other symptoms). Thirdly, our

transaction data reveals a competitive door-to-door collection market. We observe sta-

ble prices with very low dispersion around the times when most collectors are searching

for customers. This coincides with low search times between transactions and a fairly

constant tricycle loading rate, which again exhibits low variation across areas in the city.

Fourthly, our count data at disposal sites indicates that disposal is highly concentrated

at dumpsites, with the four illegal dumpsites in the city accounting for approximately

75% of disposal activity in the market. This alone suggests that in the absence of pricing

policies, the market displaces externalities from upstream to downstream of waste genera-

tion. The geolocated collection transactions and our survey data suggest the formation of

catchment areas around disposal sites (i.e. Borla Taxis collect relatively close to disposal

sites, trading off commuting and disposal costs), driving spatial differentiation in disposal,

consistent with local market power.

Building on these facts, our model combines two discrete choice systems ruling house-

hold waste disposal choices and collectors routing decisions. It introduces market power

in disposal, with disposal sites competing in a Nash-Bertrand pricing game. Upstream

of the waste flow, households demand waste collection services, which collectors supply

by choosing collection locations. Perfect competition makes them price takers, with con-

vex marginal cost of filling up their tricycle determining the number of customers they
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serve. Downstream, collectors demand options to dispose of their collected waste, which

are supplied by disposal sites (either government transfer stations or uncontrolled/illegal

dumpsites). Waste uncollected at source and disposed of at illegal dumps generate ex-

ternal environmental and health costs. Through the model, we characterize and quantify

optimal urban waste management policy given environmental externalities and the struc-

ture of waste markets in collection and disposal. Consistent with Pigou 1932, we find that

a social planner would set downstream disposal price equal to sites’ marginal costs plus

the marginal environmental externalities at dumpsites (downstream) minus the avoided

neighbourhood damages (upstream), addressing both market power and pollution.

We then take the model to the data. We estimate the demand for Borla Taxi waste

collection using BDM and TIOLI elicitation exercises, in which we offer households the

option to purchase a collection service during the interview. We estimate high price

elasticities at low prices and a high take-up rate of Borla Taxi services at equilibrium

attribute values. 70% of households are willing to have their waste collected at the current

market price of 18 Ghana cedis (GHS) per week. A 50% price reduction to 9 GHS would

raise this share to around 90%. We cannot reject that the price elasticities we estimate

with BDM and TIOLI (on different random samples) are the same.

We run a stated preference survey experiment, using choice cards with exogenously

varying attribute values, to understand how households choose between different disposal

options when multiple alternatives (Borla Taxi, formal collection, communal container,

burning, or dumping) are available, and they can differ across dimensions like price, fre-

quency, or time involvement. Our estimates show that beyond prices, households value

frequency of collection. Using the estimated preferences to predict demand in each lo-

cation, we find that Borla Taxis capture a market share close to 70%, with about 20%

of households burning or dumping their waste, and the remainder opting for either for-

mal truck collection or communal containers. These predicted market shares align with

the results from the BDM and TIOLI exercises, with survey responses on waste disposal

choices, and with the spatial variation in waste pollution we measure using the images of

gutters and drains.

To estimate collectors’ routing choices and disposal site-specific operational costs,

we use a Nested Fixed Point strategy over collection and disposal prices. Our algorithm

minimises a joint objective where we consider both the negative log-likelihood for indi-

vidual collector commuting behaviour and the moment distance between model-simulated
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disposal prices and flow shares and their data counterparts. Our estimating procedure

exploits model-implied variation in collector flows and in disposal fees from the sites’

pricing game, leveraging the parameter estimates of households’ discrete choice problem.

Intuitively, sites with higher costs attract fewer collectors and charge higher fees in equi-

librium, with spatial differentiation through travel costs allowing some degree of market

power. We estimate lower marginal costs for dumpsites than transfer stations, consistent

with the different technologies and procedures involved. We complement these structural

estimates with first, a gravity equation that informs our estimates for collectors’ disutility

from commuting; and second, a field experiment, in which we subsidise disposal at waste

transfer stations, allowing us to evaluate collectors’ responses to price changes.

Equipped with our calibrated model, we assess whether second-best environmental

regulation delivers social welfare gains close to that in the social planner’s solution and

at what cost. Our counterfactual exercises show that downstream final price subsidies of

50% at transfer stations achieve 91% of the environmental costs reduction that the social

planner allocation delivers, and 84% of the planner’s aggregate welfare gains from base-

line.5 50% subsidies are optimal second-best policies, with 40% and 60% price reductions

leading to lower social gains. We compute the cost of implementing pricing policies, and

weigh monetary welfare benefits against them. Aggregate welfare benefits outweigh costs

of policy implementation. This is also the case for a wide range of price reductions when

considering gains for households and Borla Taxis and gains stemming from environmental

quality improvements in isolation. Despite their net gains, we quantify substantial costs

from halving prices at transfer stations. These amount to 55% of the current waste man-

agement budget of the 13 municipal assemblies in the GAMA combined (and 4.86% of

the total municipal budget of the assemblies combined). The construction of new transfer

stations, as they are currently planned by the government, achieves smaller reductions in

illegal disposal shares than 50% price reductions do (18% reduction in dumpsites’ envi-

ronmental costs against 35% for subsidies) and lower welfare gains. The yearly cost of one

of the commissioned transfer stations, based on engineering data, exceeds that of optimal

second-best prices (70% of the combined municipal budget on SWM).

Our results point towards a path for environmental regulation in lower-income cities,

where low fiscal and enforcement capacity challenge the implementation of first best tax-

ation/bans or direct delivery of environmental public services. In Accra, markets have

5The planner’s allocation is conditional on the existing set of disposal sites in the city.
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effectively reached the bulk of waste generation, with competitive forces driving collection

prices down to households willingness-to-pay to have waste removed from their home. The

role of government becomes to price the unaccounted externalities where its feasible to do

so. Second-best pricing, applied where the market meets the government, appears in this

context as feasible environmental policy. Its social benefits outweigh policy costs, which

while substantial, remain within the current municipal budgets.

The remainder of the paper is organised as follows. Section 2 provides details on

our setting. Section 3 describes our data sources and data collection exercises. Section

4 gathers the descriptive evidence that informs our modelling strategy. In Section 5, we

develop a structural model of waste collection and disposal, which captures the behaviour

of households, waste collectors, and disposal sites. Sections 6 and 7 characterise the

decentralised equilibrium and social planner allocation. Section 8 describes our estimation

strategy and results. It provides details on our survey experiments to elicit demand and

our strategy to estimate waste collectors’ disposal demand system and disposal sites’

costs. In Section 9, we analyse counterfactual waste management policies. Section 10

concludes.

2 Setting: Solid waste disposal in Accra

2.1 What we know on the economics of solid waste disposal

Waste collection and disposal in developing cities provides an important empirical

study setting. Inadequate disposal generates substantial negative externalities: waste

burning creates air and water pollution, uncontrolled dumpsites degrade soil and ground-

water while emitting greenhouse gases, and blocked drainage systems cause flooding,

which disproportionately affects the urban poor and facilitates disease transmission. No-

tably, waste disposal has proven remarkably hard to regulate effectively across cities in low

and middle income countries. In Sub-Saharan Africa, 86% of waste remains uncontrolled.6

Historically this has been the case throughout the world. Unregulated dumpsites, la-

belled as “human-made disasters” by the United Nations Environment Programme, were

the main disposal choice globally until the middle of last century. Many of them last

for decades, reach very large sizes, and become the de-facto method for providing waste

6Uncontrolled waste is that which is not collected at source, or it is collected but ends up disposed of

at open dumpsites, as opposed to engineered facilities where pollution is mitigated.
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disposal services7 (UNEP 2024). Yet, there is limited knowledge on how waste systems

function, and the economics of urban waste management in developing countries remains

broadly understudied (Bryan et al. 2020).

An earlier wave of work in the 1990s, focused on the U.S., examined optimal pricing

instruments (e.g. Fullerton and Kinnaman 1996, Fullerton and Wolverton 2000, Fullerton

and Kinnaman 1995, Kinnaman and Fullerton 2000, Fullerton and Wu 1998, Palmer and

Walls 1997). Recent empirical studies have focused on specific improvements to solid waste

management in developing countries. Jakob and Coccia 2024 and Buntaine et al. 2024 use

field experiments to examine the effectiveness of informal regulation of solid waste disposal

targetting norms-change. These studies examine how collective action incentives at the

neighbourhood level affect street clean-ups (the former) and waste burning (the latter).

Other field experiments have focused on the role of information and training provision

to households. Dhingra et al. 2024 examine whether community training can increase

household sorting and recycling, and Leffers 2024 explores whether information can play

a role in reducing indiscriminate dumping in drains and gutters. We are the first to study

the problem at a city scale, focusing on formal regulation, and using a quantitative model

that covers the behaviour of households, collectors, and disposal sites’ operators –tracing

waste from generation to collection, transportation, and final disposal.8

2.2 Accra’s growing waste market

In Accra, solid waste management is privatised, and largely unregulated. Solid waste

is collected from households or commercial areas by a combination of informal tricycle

collectors, referred to as “Borla taxis”, and regulated private contractors licensed by

the city authorities. During the last couple of decades, the city has become increasingly

reliant on unregulated private service provision. The share of households in urban Greater

Accra that report paying for their waste to be collected (by licensed trucks or Borla

Taxis) grew from 51% to over 70% between 2010 and 2021 according to the respective

nationwide population and housing censuses. Figure 1 shows the expansion of paid door-

to-door collection in Accra between these years. The map in Panel A indicates significant

heterogeneity back in 2010, with big areas of the city showing low to moderate coverage

7For example, as of 2022, 50% of Peru’s solid waste is disposed of at open dumpsites (Cristóbal et al.

2022).
8Previous quantitative structural work has focused on how intermediation affects market efficiency on

New York City’ commercial waste industry (Salz 2022).
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(red to yellow). Panel B (2021) reveals the large widespread expansion of the market over

the last decade, with most localities now hosting a large share of households paying for

formal or informal waste collection services (light to dark blue).

Figure 1: Accra’s waste collection market
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Panel B: Door−to−door collection (2021)
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Panel D: Truck collection (2021)

10 20 30 40 50 60

Panel E: Settled Area (%)

Notes: All maps employ the same colour gradient from red (0%) to blue (100%) across all panels, either showing the

share (%) of households that report each option as their main choice of solid waste disposal, or the share of settled area (in

Panel E). The underlying data comes from the 2010 and 2021 Population and Housing Census (Ghana Statistical Service,

2010, and 2021) and the Global Human Settlements Data. Panel A shows the share of households that report paying for

solid waste disposal in 2010. In the 2010 census, the question was not disaggregated across waste disposal options. It only

documented whether a household uses paid collection services. In Panel B we construct the equivalent measure to that

in Panel A, by adding the share of households that pay for formal truck collection and the share that pay for Borla Taxi

services using the 2021 data. The 2021 census asked specifically about the main solid waste disposal method used by the

household. In Panel C and D we report the share of households using Borla Taxis and formal truck collection as their main

solid waste disposal method respectively. In Panel E, we display density across the city using the percentage of settled area

at the locality level.

It is worth noting that the areas where paid collection increased the most did so

through increases in the market share of tricycle collection (Panel C). In 2021, around

half of households in urban Greater Accra report using tricycle collectors (“Borla taxis”)

as their main solid waste disposal method. This share increases to 60% when restricting

ourselves to the main area of the city depicted in Figure 1. Importantly, the areas where
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Borla Taxi collection shares are higher mirror the areas with higher density of settle-

ments (Panel E). Conversely, Panel D shows that formal truck collection is very clustered

in higher-income low-density residential areas along the airport, with many (and more

densely-populated) localities in the city exhibiting very low shares of formal collection

(for an aggregate share of 28% in 2021).

Borla Taxis transport collected waste to transfer stations or dumpsites for disposal.

At both types of disposal sites collectors need to pay a disposal fee and there is limited

recycling. Transfer stations are funded with assistance from municipal governments, and

operated by a private company. There, waste is compacted and sent to engineered landfills.

Transfer stations include leachate containment systems to prevent water pollution, covered

storage to avoid air pollution, and paved surfaces to prevent soil pollution. Unregulated,

or illegal dumpsites are large pieces of cleared land with no infrastructure to control

pollution. Waste is dumped indiscriminately. Some is separated by informal waste pickers;

the rest is burned. They are large sources of diseases, GHG emissions, air, water, and soil

pollution. Figure A1 shows examples of transfer stations and illegal sites, and Appendix

A.1 provides more background details on the structure of the market for waste collection

and disposal, which leverage statistics we generate from our primary data.

3 Data

3.1 Geography and samples coverage

We constructed a new dataset on demand and supply for waste collection and disposal

across the Greater Accra Metropolitan Area (GAMA) through several exercises over a

year.9 In October-December 2024, we collected data on household demand for waste

collection for 1800 respondents in 150 EAs within the city of Accra.10 Our enumeration

9The whole metropolitan area had a population of 4,992,911 people in 2021 and an area of 3,959.059

km2, divided in 25 municipal districts. We complement our survey data with administrative census data

from the Ghana Statistical Service. We obtained classified 2021 census data at the locality level on the

main solid waste disposal choice made by households and key household characteristics. We also leverage

2010 publicly available census data at the enumeration area level. We use the 2021 data to calibrate

access to formal collection and communal containers and to validate our model predictions.
10The city of Accra is the territory that existed as the unified Accra Metropolitan District until 2008.

It covers almost 200 km2 now divided in 13 municipal districts (Ablekuma Central Municipal, Ablekuma

North Municipal, Ablekuma West Municipal, Ayawaso Central Municipal, Ayawaso East, Ayawaso North
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areas are highlighted in red in Figure 2, which illustrates the geospatial coverage of our

data. In March-May 2025, we collected data for 400 collectors to understand the supply of

waste collection and demand for disposal at dumpsites and transfer stations. We sampled

at disposal sites (yellow dots), according to the collector traffic we estimated at each

site. In Figure 2, we highlight in blue the areas where collectors in our sample report

collecting waste. It is important to note that they cover most of the built-up area in the

metropolitan area, which we display as the light grey area.11 The overlap between the

collection areas and built-up area makes us confident that we capture most of the spatial

variation in collection with the 400 respondents in our sample –16% of the estimated

number of collectors working in the GAMA.

3.2 Demand for waste collection

We surveyed 1800 households across 150 enumeration areas (EA) within Accra (main

city-area). We randomly selected 50 EAs within 3 housing income strata, and randomly

surveyed 12 households within each EA via door-to-door interviews, to form a sample

of 1800 households. Further details on the sample are in Appendix A.2.1. The survey

included questions on the availability of waste disposal options in the neighbourhood and

their attributes or characteristics (frequency of collection, average price, waiting times

for formal and informal collection, and walking times to communal containers). We also

asked about individual main and secondary waste disposal choices and recorded details

such as average price paid, frequency of collection, and payment arrangements, among

others. Finally, we asked households about their experiences with symptoms and formal

diagnostics for a wide range of health indicators. We also inquired about the occurrence

of flooding in their neighbourhood and own street. We closed the survey by asking about

waste dumping and burning, through a set of questions regarding norms, neighbours’

behaviour, and own behaviour, using a randomised-response technique. We recorded key

household characteristics following the format of questions in the Census.

To construct an objective measure of local waste pollution faced by households in

our sample, we took pictures of gutters and drains near surveyed households following a

Municipal, Ayawaso West Municipal, Korle Klottey, Krowor Municipal, La Dadekotopon Municipal, Led-

zokuku, Okaikoi North, and Accra Metropolitan Area (AMA)), 124 localities, and 2820 census enumera-

tion areas. It is home for 1,782,150 inhabitants (2021 Census).
11To represent the settled area, we use Global Human Settlements data (GHSL), downloaded from

https://human-settlement.emergency.copernicus.eu.
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Figure 2: Geospatial coverage of primary data

Notes: Household survey enumeration areas are highlighted in red. The area enclosed within a

yellow boundary is the city of Accra –Accra Metropolitan District until 2008. This area corre-

sponds to the following 2021 municipal districts: Ablekuma Central Municipal, Ablekuma North

Municipal, Ablekuma West Municipal, Ayawaso Central Municipal, Ayawaso East, Ayawaso North

Municipal, Ayawaso West Municipal, Korle Klottey, Krowor Municipal, La Dadekotopon Munic-

ipal, Ledzokuku, Okaikoi North, and Accra Metropolitan Area (AMA). The yellow dots are the

main disposal sites in GAMA, where we conduct the collector sampling. The polygons in blue are

the localities where collectors in our sample report collecting waste in. The grey shaded area is the

settlements layer from the Global Human Settlements data (GHSL) for 2023. The area in white is

the Greater Accra Metropolitan Area (GAMA). The background map tiles are rendered using the

Humanitarian OpenStreetMap Team style.

simple protocol.12 We obtained a total of 6000 pictures (between 5 and 10 per house-

hold). Standard object-detection networks yielded high false-negative rates when trash

lay under muddy water, which is common in urban gutters. Hence, we inspected and man-

ually counted the number of trash objects in each picture, averaged image-level counts

at household-level first and EA-level second, and thereby constructed a measure of waste

pollution in the 150 areas we surveyed.13 In Figures A4 and A5, we provide examples of

12Pictures had to be taken perpendicular to the gutter, pointing directly towards it, and every 5 steps.

We took a total of 5-10 pictures for each household. In some instances, there were no gutters near a

survey household or they were closed. In those cases enumerators had to take a photo of the close gutter

or the ground as proof.
13We tried using deep-learning techniques relying on YOLO models we trained on existing waste images

(TACO dataset). The models struggled to detect waste objects in turbid water, which are of particular
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pictures for neighbourhoods with low and high waste pollution levels. Figure A6 displays

the spatial variation in local waste pollution across our survey areas.

3.3 Supply of waste collection and disposal

3.3.1 Disposal sites inventory and collector flow counts

To design our sample of waste collectors, we conduct an inventory of all disposal sites

in operation within the GAMA and measure the flow of collectors arriving to each of them.

We visited all disposal sites –both transfer stations and illegal or uncontrolled dumpsites–

which we had identified in a pilot survey with 50 collectors, online newspapers, and reports

on solid waste management in Accra. Some of the sites we found across these sources

were no longer in operation or had been decommissioned. On active sites, we counted the

number of tricycle collectors arriving during the day, since early in the morning until the

early afternoon. We cross-checked our numbers with the personnel working at the sites

to arrive to our final estimates of collectors flows to each site. Table A1 provides details

on the sites inventory, including the rationale for sample inclusion or exclusion for each

site.

Our final list includes 8 sites where collectors operating in Accra dispose of their

waste. The list includes 4 formal transfer stations/recycling sites, and 4 unofficial, un-

controlled dumpsites. The 4 formal sites and the estimated rounded collector traffic (in

parentheses) are the Ashaiman-Adjie Kojo transfer station (150 collectors), the Pantang

transfer station (100 collectors), the Korlebu Recycling Plan (IRECOP) (100 collectors),

and the Kokomlemle Mini Transfer Station (Britania Mini Waste TS) (10 collectors). The

unofficial dumpsites are the Mallam/Tetegu dumpsite (150 collectors), the Glefe dumpsite

(100 collectors), the Agbogbloshie Sikkens dumpsite (350 collectors), and the McCarthy

dumpsite (400 collectors). We allocate our sample of 400 collectors proportionally to the

traffic at each site.

importance in our application.
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3.3.2 Borla Taxi survey

We surveyed 400 collectors disposing of their waste in our 8 sampling disposal sites.14

The questionnaire included general questions on waste collection practices, a time use sur-

vey to understand time spent searching for customers, commuting, recycling, and dispos-

ing of waste, and several detailed modules: on main and secondary collection localities,

on disposal and recycling choices, and on daily/weekly accounting (costs and revenue

breakdown, and total profits).

The information gathered allows us to characterise our choices of interest (i.e. col-

lection area, number of customers, and disposal site) and the attribute values governing

them. First, daily commuting flows (from home to collection area, and from collection

area to disposal site) reveal collectors’ choice of collection area and disposal sites, as well

as commuting distances. Second, through the module on disposal we gather information

on the attributes of disposal sites beyond commuting costs (daily fee, waiting time, and

recycling price). Third, our general questions on collection practices give us information

on the distribution of daily customers. And fourth, our accounting module allows us to

measure daily profits, collection and recycling revenues, and total costs.

3.3.3 Transactions data

We complement our survey with real-time, geolocated data on waste collection trans-

actions. Upon recruitment, surveyors invited collectors to download a smartphone app

we designed for the study.15 This meant that collectors had to own a GPS-enabled smart-

phone to participate in the survey, but most collectors we approached owned a basic

smartphone and were willing to download the app.16 The data-collection app required

active engagement. We instructed collectors to register all their daily collection transac-

tions for a period of two weeks, indicating the agreed price and whether they received

any of the waste already separated/sorted. In Figure A8, we include the app screens with

the main functionalities. The app automatically retrieved the geolocation and time of the

14Enumerators arranged in-person interviews at disposal sites, after informing informal Borla Taxi

leaders, personnel at transfer stations, and high-level members of the waste collector associations. In

some instances, Borla Taxi leaders helped coordinate interviews at the sites or near collectors’ home

locations.
15Figure A7 shows the timing of app registrations over the survey period.
16There were no operating system restrictions. We made the app available in the Apple Store, Google

Playstore, and downloadable directly using an APK file.
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transaction. To incentivise usage, the app included a simple reward system through which

collectors redeemed compensation via mobile money at the end of each week.17

There are a total of 25840 transactions and 1752 collector-day observations from

the start of April until the end of May. We classify each collector in a given day ac-

cording to their usage. We identify “normal users” as those who record a number of

transactions close to their reported daily average number of customers in the survey. And

abnormal/low-users as those who either report too many transactions (very small num-

ber) or do not engage with the app and register numbers well below their stated number

of daily customers.18 Out of the total collector-day observations, 43% are classified as

normal users. Figure A9 shows the basis for our classification –the relationship between

number of daily customers and the number of transactions registered in a day. Except

for those reporting customers over 50 (small percentage of the total sample), our classifi-

cation seems reasonable, with recorded transactions scattered around the 45-degree line,

in a clear upward-sloping relationship. Conversely, those that we classify as low-usage

show no relationship between the number of customers in the survey and the number of

recorded transactions, which remain always low.

A number of additional descriptive facts validate our approach. First, the distribution

of customers in the survey for both type of users is very similar, hence the different

behaviour using the app is not driven by differences in the number of customers. Moreover,

for each date, the average number of transactions registered by normal users is very similar

to their survey-reported customers. The two trends also coincide reasonably well with the

survey-reported numbers for abnormal/low users. The number of transactions registered

by abnormal/low users on the other hand is significantly below survey-reported customers

17Enumerators helped collectors download the app into their smartphones and register a few trial

transactions to show them the app functionalities. We organised a system of daily callbacks to incentivise

collectors to fill the data and validate the information registered in the day. We rewarded collectors for

their engagement with the app via weekly payments over a period of 2-4 weeks in total. After the

incentivised period, many collectors kept using the app.
18This means that a collector can be classified as normal user in a date and as abnormal/low-user in

another. For example collector A, reports an average number of daily customers in the survey of 25.

In day one, collector A registers 21 transactions in the app, in day two, reports 31 transactions, and in

day three reports 23 transactions. All of these are classified as normal usage collector-days. The same

collector A registers 8 transactions on day four. In this case, we classify the same collector in day four as

low-usage due to the difference between the registered transactions in that particular day and the average

daily number of customers reported in the survey.
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for each date. These facts suggest that the two types of users are not systematically

different in the number of customers. Figure A10 illustrates these two patterns. Second,

the spatial coverage and overall pattern of transactions is very similar across the two

types of users. In addition, this spatial distribution is consistent with the data reported

in our Borla Taxi survey, and the data included in the 2021 Population Census. The

map in Panel A of Figure 3 shows in yellow all registered transactions and in red the

transactions that correspond to normal usage. The two display a remarkably similar and

comprehensive spatial coverage, strengthening our case for the representativeness of the

data registered by normal-users. Additionally, the registered transactions overlay well

with the information on collection areas we gather in the survey. The same map displays

in blue the localities where collectors in the survey report collecting waste in, with darker

shades of blue indicating higher collector density. The transactions data cover almost all

the localities identified in the survey, and its density coincides reasonably well with that

derived from the information in the survey. Finally, the 2021 Population Census allows

us for an additional cross-validation of the transactions data. In Panel B, for the main

city-area, we display the share of households that relied on Borla Taxi collection in 2021.

The higher density of transactions (normal-usage only) corresponds clearly with areas

with higher shares of Borla Taxi/tricycle collection.19

Our final sample of geolocated transactions strengthens our analysis in four ways.

First, it provides an accurate measure of collection prices across neighbourhoods in the

GAMA, a key equilibrium outcome that our model ought to generate. Second, it helps us

validate the information on collection areas reported in the survey. Third, it informs our

understanding of the downstream and upstream structure of the market, as we describe

in Section 4. And fourth, it allows us to estimate the costs of searching and filling up the

tricycle, as explained in Section 5.2.2.

19The East of the city seems to be an exception. It is possible that a small number of collectors serve

the high shares of households using these services. Alternatively, the closure of the Teshie transfer station

has changed collection flows. At the time of our survey, the Teshie transfer station, located in this area,

was closed. Anecdotally, collectors at the Adjie Kojo transfer station up north reported that they used

to dispose of at Teshie transfer station when it was open. If disposal, and possibly collection flows have

diverted further north, this may explain the difference between the transactions and the census data.
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Figure 3: Transactions against survey and census data

Notes: The map in Panel A includes the location of transactions by those classified as normal users (small red dots),

and of all transactions (small yellow dots). The map also indicates, as the colour of each locality polygon, the number

of collectors in the survey that report collecting in that locality. Light blue indicates numbers lower than 10, dark blue

numbers higher than 40 collectors. The total area represented in white corresponds to the GAMA. The map in Panel B

includes the location of transactions by those classified as normal users (small red dots), as in Panel A. It also includes

information on the share of households in the 2021 Population and Housing Census that report using Borla Taxis/Tricycles

as their main solid waste disposal method. The data is at the locality level for the area that forms the city of Accra (within

the GAMA). The map employs a colour gradient from light yellow (0% coverage) to dark blue (100% coverage). In Panel

A, the area corresponding to the city of Accra is indicated using a thicker black boundary.

4 Descriptive facts

We present four facts that motivate our model and experimental exercises. These

stylised facts document the structure of the collection and disposal markets as well as the

trade-offs faced by households and collectors when choosing disposal options or collection

areas and final disposal sites, respectively.

Fact 1 – Access to formal collection trucks is highly restricted, while Borla Taxis serve

most areas in the city. Borla Taxis charge lower prices and provide collection at a higher

frequency. Households predominantly choose Borla Taxi services.

Access: Only 29% of households in our sample report that formal truck collectors

operate in their area. Figure A11 shows in white the survey enumeration areas with
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no access to formal trucks.20 These tend to be further from main roads, and notably

within the city slums and other areas with high levels of housing poverty (see Figure

A3). Consistently, in our sample, those that report availability of truck collection in their

area tend to also report higher incomes (Figure A12). Panel D in Figure 1, which shows

formal collection shares at the locality level in 2021, is also consistent with this variation

in access to licensed collection services. In contrast to this, only 9.8% of households report

that Borla Taxis do not collect in their area, with access being less dependent on income

(Figure A12). Our collector survey and transaction data confirm that collectors serve

most of the metropolitan area, as illustrated earlier in Figure 3.

Choices and attributes: Among the households that have access to formal collec-

tion, 32% use the service. Conversely, 92% of households use Borla Taxi services if they

are available in their area. In Figure A13 we present the raw numbers, which illustrate

both differences in access and household choices. To explain these choices, we gathered

information on the attribute values of all disposal options available to households. Ta-

ble 1 summarises this information. Average weekly payment to Borla Taxis is 17 GHS.

For formal collection, the arranged fees amount to 23.8 GHS a week on average. Borla

Taxis collect waste much more frequently. 99% of households in the whole sample (users

and non users) report them collecting waste at least once a week, with a large majority

collecting every day. In contrast, 62% report that formal trucks collect at least once a

week. Beyond door-to-door collection, only 16% of households report having access to a

communal container in their area. On average they pay 6 GHS and have to walk 10 min

to get to a container. 47% of those reporting access to a container in their area use it.

Anecdotically, non-users mentioned long walking distances and the convenience of Borla

Taxi services.

Fact 2 – Despite the large expansion of Borla Taxi collection, neighbourhood waste pol-

lution remains a challenge, contributing to the prevalence of diseases and increased flood

risks during the rainy season.

In our survey, around 80% of households report using Borla Taxis/Tricycle collec-

tion as their main waste disposal option. Figure 4 disaggregates this statistic at the EA

level; Figure A14 shows the distribution of main waste disposal choices across localities

using 2021 census data and our survey. Informal tricycle collection (dark blue) is the

dominant method across most areas, typically representing 50-90% of disposal. However,

20The lines in blue we represent the network of highways, primary, and secondary roads.
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Table 1: Household waste disposal options: availability and attributes

Mean SD N

Availability of formal collection only 0.029 0.169 1813

Availability of formal and Borla Taxi collection 0.263 0.440 1813

Availability of Borla Taxi collection only 0.639 0.480 1813

Availability of waste container in the area 0.162 0.369 1813

No door-to-door collection available 0.069 0.253 1813

Use formal waste collection service 0.323 0.468 529

Use Borla Taxi collection service 0.922 0.268 1635

Use communal container 0.466 0.500 294

Borla Taxi weekly payment 16.993 29.559 1444

Formal collection weekly payment 23.765 35.356 118

Formal collection ≥ once week 0.625 0.485 456

Borla Taxi collection ≥ once week 0.987 0.114 1601

Disposal fee at container 6.017 4.083 177

Walking time to container (minutes) 9.976 6.295 293

Notes: The underlying data is from the household survey. There are 1813 survey participants across

150 EAs. All variables are reported based on knowledge about availability and attributes in the neigh-

bourhood except weekly prices, which are reported for users of the service. We report, in three columns,

the mean, standard deviation, and number of observations for each variable.
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there is substantial variation across localities –some areas show nearly complete reliance

on informal collection, while in others, options like formal collection (light blue), con-

tainers (yellow), and burning/dumping (red) gain importance. Burning and dumping

also emerge as the secondary disposal choice for several households across our survey

EAs. These numbers are likely an underestimate of the amount of local waste pollution

(i.e. household burning and dumping). Despite the relatively low expressed choices, 40%

of people expressed seeing others burning waste in their neighbourhood, and 24% have

seen others dumping waste in gutters or drains. In Appendix A.3.1, we provide details

on a small randomised response exercise we conducted with households, designed to re-

duce social desirability bias or non-response for sensitive questions like waste dumping

or burning. Our objective was to obtain a better measure of the underlying probability

of burning/dumping in the city. The results, however, reflect that burning and particu-

larly dumping are potentially very stigmatised behaviours and hence obtaining accurate

estimates of their prevalence via survey responses is challenging. In Section 8.1, we will

turn instead to model-implied shares of burning/dumping in Accra, based on our demand

estimates and measured values of the attributes of waste disposal options.

Our objective measures of waste pollution, however, allow us to assess the extent to

which there is incomplete collection in the current collection market equilibrium and what

are its welfare consequences. Table 2, provides suggestive evidence on the effect of local

waste pollution on health outcomes and the incidence of flooding. We find a consistently

positive and statistically significant association between trash accumulation and adverse

outcomes. Specifically, a 1% increase in the count of trash in gutters/drains is associated

with a 0.075 percentage point increase in the share reporting flooding, 0.082 in malaria,

0.024 in diarrhoea, 0.018 in vomiting, 0.041 in coughing, and 0.027 in skin problems, with

all coefficients significant at the 5% or 10% level. Regressions include controls for door-

to-door collection access, district fixed effects, and altitude, which is negatively associated

with flooding.

Fact 3 – The Borla Taxi collection market is competitive and clears by noon. Search time

between two transactions is constant throughout the day and across neighbourhoods.

We turn to our high-frequency data to document how the waste collection market

operates over the course of a day. Panel A in Figure 5, shows that most collectors search

and match with customers between 6am and 10am (red solid line). This is consistent with

the fact that 97% of households reported having their waste collected by 10 am. During
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Figure 4: Household collection/disposal choices (main and secondary)

(a) Survey Main Choice (EA)
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(b) Survey Secondary Choice (EA)
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Notes: Panel A shows survey responses to the question on main waste disposal option. There is a total of 1813

households participating in the survey. We calculate shares at the enumeration area level. The figure plots the shares

for each disposal option stacked, at the EA level. EAs have been sorted based on the share of Tricycle/Borla Taxi col-

lection share. In dark blue, we present tricycle collection shares, in light blue, formal truck collection shares, in yellow,

the share of households using containers as their main option, and in red the share using burning/dumping/burying

trash. In Panel B we represent the answers to the second waste disposal option used occasionality by households.

The order and colour schemes are preserved. When households in an EA report not using a second waste disposal

option occasionally we leave it as NA in a light gray colour.

this period, average transaction prices (in blue) remain stable, with narrow confidence

intervals. Later in the day, the number of collectors and transactions drop sharply, and

prices and their dispersion rise. This pattern suggests that the market is competitive dur-

ing the main operating hours across and within neighbourhoods, with collectors offering

similar prices.21 Panel B in Figure 5 confirms the timing of market clearing we see in

the transactions data. It shows collector responses to the time use module in the survey.

Collectors commute from 4:00 to 6:00 am (yellow dotted line), search and collect between

6:00 and 10:00 am (red solid line), and then start their commute to disposal (gray dotted

line) and home locations (black dotted line).

Panel C presents the time between transactions. After 10 am searching becomes

harder, consistent with the observed higher and more volatile prices observed in Panel A,

which adjust to a lower supply and higher search costs. During the market concentration

21The increase in prices at later hours likely reflects reduced supply and thus greater pricing power for

those still operating.
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Table 2: Neighbourhood waste pollution damages

(1) (2) (3) (4) (5) (6)

Flooding Malaria Diarrhea Vomiting Coughing Skin problems

Log (trash count) 0.0749∗∗ 0.0819∗∗ 0.0238∗∗ 0.0183∗∗ 0.0412∗ 0.0267∗

(0.032) (0.033) (0.010) (0.008) (0.021) (0.016)

Borla Taxis access -0.0957 -0.0233 0.0127 0.0347 -0.0483 0.0488

(0.119) (0.074) (0.023) (0.035) (0.070) (0.040)

Formal collection access -0.0427 -0.0452 0.0177 0.0304 -0.0886∗ 0.0235

(0.076) (0.066) (0.026) (0.032) (0.053) (0.037)

Altitude -0.00181∗∗∗

(0.001)

Observations 143 143 143 143 143 143

Notes: * 0.1 ** 0.05 *** 0.01. To calculate trash count averages at the EA level, we first average at the household

level based on 6000 images of gutters and drains near surveyed households. We then compute EA-level averages. We

include as controls population density, a housing poverty index constructed using census data, the share of pictures

that are of drains (instead of gutters), and altitude when using flooding as the outcome variable. For the rest of the

outcomes, the coefficient for altitude is very small and not significant. Regressions include district fixed effects.

period (6-10 am), the average time observed between transactions is low, and increasing

very slowly until 10 am. This implies that the rate at which collectors load their tricycle

is fairly constant on average during the period they are active in the market (i.e. before

commuting to dispose of the collected waste). At every 10 min bin, collectors are making

transactions 5-15 min after the last one. Furthermore, Figure 6 shows little dispersion

in the average times across areas reported in Panel C, pointing towards similar loading

rates. Panel B Figure 6 plots the mean and confidence intervals for the average loading

rate across localities. That is, the ratio between collection transactions and searching

collectors. The dispersion across areas appears small, with upper and lower bounds of

the confidence intervals between 1 and 2 matches per 10-min bin. The three panels are

consistent in showing a competitive collector market with constant with no significant

search frictions that clears before noon.

Fact 4 – Disposal sites appear to have distinct catchment areas, likely due to the substan-

tial travel costs faced by collectors.

Our count data indicates that disposal is concentrated at dumpsites. The four infor-

mal dumpsites together account for approximately 75% of all disposal activity, with two

of then dominating the market (Panel B in Figure 7 shows the market shares for disposal
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Figure 5: Collection market
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Panel C: Time between transactions

Notes: Panel A shows in red the number of collectors transacting in each 10-min bin, according to the transaction data

collected through our smartphone app. The left y-axis in red indicates the numbers. In blue, we represent the average price

of the transactions registered in the app at every 10-min time bin. We include 95% confidence intervals also in blue. In

Panel B we represent the number of collectors engaging in each of four activities at each point in time. In red the number

of collectors searching for customers; in a dotted yellow line the number commuting to collection areas, in a dotted gray

line the number commuting to disposal sites, and in a black dotted line the number commuting back home. The underlying

data comes from our survey with 400 collectors. We asked start and end time for each of these activities, and construct

the figure based on these data. In Panel C we add the time between transactions registered by active (i.e. transacting)

collectors in the smartphone app. We calculate average time since last transaction for the transactions registered in each

10-min time bin.

sites in the GAMA –the Mc Carthy and Agbogbloshie Sikkens dumpsites in dark and light

red cover more than half of the market). Panel A of the same Figure shows the locations

of disposal sites (large, coloured circles). The sites are spread across different parts of

the city, with market shares varying from around 8% to nearly 30%. In Panel A we also

represent the location of collection transactions (small dots), which take the colour of the

disposal site where the collected waste was disposed. Notably, most household waste is

collected relatively close to the site where it is ultimately disposed, forming catchment

areas around disposal sites. This is particularly the case for transfer stations (blue, light
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Figure 6: Loading rate
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Notes: The figure shows the time between transactions registered by collectors in the smartphone app. We

calculate average time since last transaction for the transactions registered in each 10-min time bin. 95%

confidence intervals are displayed in gray. We calculate loading rates as the number of transactions over the

number of searching collectors (in red), first at the locality level, and then averaged at the time-bin level. 95%

confidence intervals are displayed in red.

green, and dark green), where spatial differentiation is clearest. For the cheaper dump-

sites, collectors can afford to travel longer distances, with some waste being transported

across the city –Panel A reveals several cases where waste collected in eastern parts is

taken to Glefe (yellow) or McCarthy (dark red), both located in the west. Figures A15

and A16, show, using survey data on collection areas, a very similar spatial differenti-

ation pattern. The spatial dispersion of sites and the formation of localised catchment

areas points to local market power, whereby commuting costs limit the extent to which

collectors can arbitrage across disposal sites.

These patterns raise questions about how collectors choose disposal sites and how

operators establish disposal fees in competition with each other. Table 3 provides de-

scriptives on the factors behind this choice. Informal sites tend to charge lower fees,

involve shorter waiting times, and are often closer to collectors’ homes. However, they
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Figure 7: Collection transactions by disposal site

Notes: Panel A shows the geolocation of collection transactions registered in the smartphone app as small dots. The colour

of each dot corresponds to the disposal site chosen by the collector registering the transaction. We observe the disposal site

choice in the survey. The bigger circles display the location of disposal sites and are coloured using the same palette. We

include a total of 15425 transactions. These are the transactions for which the disposal site is clearly identified in the survey,

excluding Kokomlemle Mini Transfer station and other sites mentioned in small number by collectors. Panel B shows the

disposal shares for each site as measured in the sites inventory exercise, where we manually counted the flow of collectors

arriving to each site on a given day. Relative to the app data, Agbogbloshie Sikkens in under-represented and McCarthy is

over represented in the count data. The rest of the patterns remain very similar.

offer fewer opportunities to sell recyclables. Collection outcomes such as prices, number

of customers, revenue, measured with the survey and app transaction data, as well as

collectors’ overall profits do not differ significantly for those disposing at formal and in-

formal sites, suggesting that collectors are broadly profit-maximising and that potential

gains are arbitraged away, with price differences compensating for commuting costs (Table

A2).
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Table 3: Disposal and recycling

(1) (2) (3) (4) (5) (6)

Unofficial Formal ∆ Ha: ∆ < 0 Ha: ∆ ̸= 0 Ha: ∆ > 0

Disposal

Payment to dispose (each visit) 43.06 123.86 -80.81*** 0.000 0.000 1.000

(N= 283) (N= 96)

Total time at disposal site 25.18 139.54 -114.35*** 0.000 0.000 1.000

(N= 287) (N= 97)

Total time commuting back home (min) 29.91 43.75 -13.84*** 0.000 0.000 1.000

(N= 287) (N= 97)

Recycling

Sorts from collected waste 0.55 0.67 -0.12** 0.014 0.028 0.986

(N= 286) (N= 97)

Sells recyclables 0.56 0.69 -0.13** 0.010 0.021 0.990

(N= 287) (N= 97)

Total time recycling (min) 30.23 27.11 3.12 0.782 0.437 0.218

(N= 283) (N= 97)

Daily recycling revenue 23.62 44.72 -21.10*** 0.000 0.000 1.000

(N= 287) (N= 97)

Selling price for a small bag of recyclables 21.65 51.62 -29.98*** 0.003 0.006 0.997

(N= 68) (N= 48)

Selling price for a big bag of recyclables 85.61 373.23 -287.61*** 0.000 0.000 1.000

(N= 98) (N= 62)

Daily average % of household sorted waste (app) 60.62 52.02 8.60 0.809 0.382 0.191

(N= 69) (N= 23)

Notes: The table reports mean outcomes for waste collectors at Unofficial (col. (1)) and Formal (col. (2)) disposal sites. ∆ (col. (3)) is the difference

in means for collectors disposing at unofficial and formal sites. Sample sizes (N) for each group appear in parentheses below the means. Stars on ∆

denote significance from two-sided Welch t-tests: *** p < 0.01, ** p < 0.05, * p < 0.10. Columns (4)–(6) give one-sided p-values for the hypotheses

Ha : ∆ < 0, Ha : ∆ ̸= 0, and Ha : ∆ > 0, respectively. Formal sites are the Ashaiman-Adjie Kojo transfer station, the Pantang transfer station, the

Korlebu Recycling Plant (IRECOP), the Kotoku Trash Site/Amasaman, and the Kokomlemle Mini Transfer Station. Unofficial or illegal sites are

the Mallam/Tetegu dumpsite, the Glefe dumpsite, the Agbogbloshie Sikkens dumpsite, and the McCarthy dumpsite. All variables in the table are

winsorised (1st and 99th percentiles).
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5 A Model of Waste Collection and Disposal

Our model involves three types of agents. First, households that choose between

waste disposal options: formal trucks, Borla Taxis, communal containers, and illegal dis-

posal via burning or dumping. Their choice is governed by the characteristics of each

option, namely price, frequency of access, time involved, and the need to sort. Second,

informal waste collectors that choose collection-disposal routes by trading off commut-

ing distances, time spent at disposal sites, and collection profits net of disposal costs.

This route choice involves selecting an area for collection and a site (transfer station or

dumpsite) for disposal. Our perfect competition assumption implies that they collect

from customers up until their marginal costs of filling their tricycle and disposing of the

collected waste equals collection price in the chosen area. We assume costs increase in a

convex way as fuel cost rise with the weight of the tricycle. Third, disposal sites exercise

market power locally, internalising their demand, and playing a pricing game in setting

disposal fees. The actions of these three types of agents together determine the amount

of uncontrolled waste in the city (i.e. waste not collected or collected but disposed of at

illegal dumpsites), which translates into pollution and its associated damages.

5.1 Households

When deciding how to dispose of their waste, households choose between formal

collection (F ), Borla Taxis (BT ), communal containers (C), or burning and dumping

(BD). The set of available options may vary across neighbourhoods, and household

i living in neighbourhood a ∈ A chooses the disposal option o ∈ Oa that maximises

utility

Uiao = κo + κ1 pao + κ2 fao + κ3wao + κ4 sao + µH εiao (1)

Each disposal option is characterised by its price pao, collection frequency fao, waiting time

wao, and waste sorting requirement sao. The selection of these attributes was informed

by our conversations with households and Borla Taxis during focus groups. The taste

parameters κ govern how each attribute affects household’s utility. We allow for level-

differences across waste disposal options κo to enter the deterministic component of utility.

All things equal, these capture differences in preferences across disposal options, which

may be driven by social norms, or environmental and health considerations, perhaps even

lead to partial internalisation of damages.
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We assume the idiosyncratic utility component εiao to be iid and to follow a Gumbel

distribution. The logit choice probabilities for each option o in area a are

πao =
exp
(
κo + κ1 pao + κ2 fao + κ3wao + κ4 sao

) 1
µH∑

h∈Oa
exp
(
κh + κ1 pah + κ2 fah + κ3wah + κ4 sah

) 1
µH

(2)

This modelling choice further implies that the expected utility of a household living in

area a can be expressed as

UH
a = µH Γ +

∑
o∈Oa

πao (κo + κ1 pao + κ2 fao + κ3wao + κ4 sao − µH ln (πao)) (3)

where Γ is the Euler–Mascheroni constant (see Appendix A.7 for derivations).

Neighbourhood pollution: We can calculate the share of waste that is burned or

dumped indiscriminately for equilibrium attribute levels πa,BD using (2). We assume that

waste uncollected at source leads to environmental and health damages, which take the

following form

EA ≡ ι
∑
a∈A

NH
a πa,BD (4)

where the parameter ι translates waste pollution into a monetary welfare metric and NH
a

is the number of households living in location a.

We assume that only prices are subject to endogenous adjustments and assume that

the remaining attributes of the disposal options (frequency F and time T) are exogenously

determined. We fix them at the levels observed in our household survey. Note that in

(1), we also abstract from social interactions in waste disposal choices.

5.2 Borla Taxis

5.2.1 Collection-disposal route choice

An informal waste collector living in home location h ∈ H ⊆ A chooses a collection-

disposal pair aj from the full set of combinations of residential neighbourhoods and dis-

posal sites C = {(a, j) : a ∈ A, j ∈ J F ∪ J I}, where J F is the set of waste transfer

stations available and J I is the set of unregulated dumpsites. The home locations of

collectors are exogenously determined and the number of waste collectors living in each
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location denoted as NBT
h .22 The utility of collector i living in h, collecting in a, and

disposing at site j is

Uihaj = ν1 Πaj︸︷︷︸
route
profit

+ ν2 τhajh︸︷︷︸
travel

distance

+ν3 Tj︸︷︷︸
wait
time

+ µC εiaj (5)

Collectors need to incur commuting costs determined by the total route distance τhajh;

from home h to area a, to site j, and back home. If they choose to dispose at site j they

need to wait Tj time units at the site. Waiting time is not a feature of congestion but

of the type of site (the technology and procedures at transfer stations involve longer wait

times).

Collectors take the collection price in each area pa,BT , disposal fee p
d
j they need to

pay, and per-unit recycling revenue rj at site j as given. Their route profits take a simple

form

Πaj = (pa − pdj + rj) qaj − C(qaj) (6)

where qaj denotes the number of customers and C(qaj) the search/tricycle fill-up costs.

C(qaj), and hence the choice of optimal number of customers q∗aj are determined by the

matching process through which collectors find customers, which we describe in Section

5.2.2 below.

We allow for idiosyncratic collector-route shocks εiaj, which are iid and follow a

Gumbel distribution. The route (pair {a, j}) choice probabilities for collectors living in

area h are

ϕhaj =
exp
(
ν1Πaj + ν2τhajh + ν3Tj

) 1
µC∑

(b,k)∈C

exp
(
ν1Πbk + ν2τhbkh + ν3Tk

) 1
µC

(7)

Similarly to households, the expected utility of a collector with home location h can be

expressed as

UBT
h = µC Γ +

∑
(b,k)∈C

ϕhbk (ν1Πbk + ν2τhbkh + ν3Tk − µC ln (ϕhbk)) (8)

22In Appendix A.7 we present a model extension where the home locations and total number of collec-

tors in the city are endogenously determined.
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5.2.2 Search costs and quantity choice

In each area a collectors incur in costly search, traveling to find households looking

for their waste to be collected. The time it takes a collector to find a customer is governed

by the loading rate, which is defined as the average number of transactions mat per active

collector cat at each point in time

ϑat =
1

T

mat

cat
(9)

where T is the duration of the time interval. It follows that the average time between

transactions is given by

∆at = ϑ−1
at (10)

As discussed in Section 4, the transactions per active collector and the time between

transitions do not vary substantially throughout the main operating hours of Borla Taxis

and do not exhibit considerable spatial heterogeneity. In particular, Figure 6 suggest that
mat

cat
≈ 1.5 and ∆at ≈ 7 during all 10 minute intervals (T = 10) of the main operating

hours. These numbers are consistent with (9) and (10) suggesting that ϑat ≈ 0.15 for

all time periods and locations. In the following we threat the loading rate as a physical

parameter ϑat = ϑ = 0.15 reflecting the speed at which a waste collector can load the

waste, handle the transaction, and drive to the next building. The evidence in Figure 6

suggests this process to take about 7 minutes, which we believe to be a reasonable value.

While the descriptive evidence in Section 4 does not provide definitive evidence of the

loading rate being exogenous, it is suggestive and consistent with this assumption.

Given a constant loading rate ϑ, collecting waste from q customers requires a total

time T (q) = q
ϑ
. We further assume that time increases costs in a convex way, as fuel costs

per minute, exhaustion, and opportunity costs increase as the tricycle fills up, taking the

following quadratic functional form

C(q) =
θ

2
(T (q))2 =

δ

2

( q
ϑ

)2
(11)

This functional form ensures unique optima. The parameter θ translates search time

into monetary units. Collectors, acting as price takers and profit maximisers, will collect

until the collection price in their chosen area equals the marginal costs of filling up the

tricycle and disposing of the collected waste. Despite the physical limits of the tricycle,

we abstract from a rigid capacity constraint.23 Collectors report rarely reaching the true

23Indeed, we do not observe any bunching in the distribution for the number of customers that would

suggest collectors reaching a capacity constraint.
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physical maximum of the tricycle. They also often increase the height of the tricycle using

wooden boards they attach to its sides to fit more bags. The solution to the FOC for

route profits is

q∗aj =

(
pa − pdj + rj

)
ϑ2

δ
(12)

The optimal profits conditional on choosing collection area a and disposal site j are

therefore Π∗
aj =

δ
2

(
q∗aj
ϑ

)2
.

Lastly, we model the search process to be costly for collectors, but not subject to any

inefficiencies leading to excess demand or supply. Therefore collection markets will clear,

following:

πa,BT Na =
∑
k

∑
m

ϕkamNk qam (13)

Whereby the above expression follows from (2) and (7).

5.3 Formal trucks and containers

We assume that the availability of formal collection trucks FA and communal con-

tainers CA in neighbourhood a is exogenously determined and calibrate it using geolocated

2021 census data. As these two waste collection options are provided in cooperation with,

or directly by, local authorities, we abstract from any inefficiencies in these two sectors.

We model the pricing to follow a Pigouvian rational, setting the price equal to the marginal

provision cost mca,o minus the averted environmental damages ι

pa,o = mca,o − s , for o ∈ {F,C} (14)

by imposing the per unit subsidy of s = ι. In the quantitative analysis we calibrate

these prices to the values reported by households in our survey data. Providers of formal

collection and communal container services receive profits

Πo
a = (pa,o −mca,o) Qa,o − Fa,o , for o ∈ {F,C} (15)

where Fa,o are the fixed costs of providing the service in location a. We further assume

that the government owns these firms and can provide any quantity Qa,o even if the

providers do not break even.
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5.4 Disposal sites

We have documented that disposal sites seem to have considerable market power

driven by the commuting costs collectors face. We model disposal sites as behaving

strategically, internalising the effect of their pricing choices on collector flows, following

similar applications (Nevo 2001). Profit-maximising sites with spatially differentiated

access to demand compete for collector flows in prices à la Nash–Bertrand, given the

parameters governing collectors’ route choices, their marginal costs, and the set of disposal

sites in the city. Let J be the set of active disposal sites and S the set of candidate sites

as S. Each site operator j ∈ J selects a price pdj to maximise profits

ΠD
j = (pdj − ζj) · λj(pd)− Fj (16)

where ζj is the site-specific marginal cost of processing waste. In the case of transfer

stations this involves compacting it and transporting it to landfills, ensuring no contam-

ination throughout the process. In the case of dumpsites, this involves burning it or

allocating it a space in the available land. λj(p
d) is the total inflow of waste arriving to

site j via collectors, defined as a function of optimal route choice shares and quantities

collected

λj =
∑
h

∑
a

NBT
h ϕhajqaj (17)

This flow of collectors depends on the full vector of disposal prices pd = (pdk)k∈J , which

determine collector route choices {a, j} according to the specification of route utility in

(5).

Under the existence of a pure-strategy Bertrand-Nash equilibrium in prices, and

strictly positive prices supporting it, the disposal price pdj for each site j must satisfy the

first-order condition

λj(p
d) + (pdj − ζj)

∂λj(p
d)

∂pdj
= 0 (18)

Fixed costs discipline which dumpsites remain in the market. In our counterfactuals

we will allow exit of unprofitable dumpsites, implying that J ⊆ S. We bound fixed costs

based on equilibrium prices, market shares, and our expression for sites’ profits. Transfer

stations may exist at negative profits, as they are supported by the government. We do

not model disposal sites’ entry, as entry is very restricted. We assume that dumpsites are
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currently in the areas where its feasible for them to operate (near cleared land and water

bodies, as documented in Figure A18).24

Dumpsite pollution: At dumpsites there are no measures in place to control soil

and water pollution. All waste that cannot be recycled is burned. And waste is left

standing for long periods of time leading to air pollution and GHG emissions. The negative

environmental and health consequences arising from open dumps have been documented

in public health and environmental science. We model aggregate damages arising from

disposal at dumpsites as follows

EI ≡
∑
j∈J

ϱjλj (19)

where ϱj translates tons of waste in open dumps into a monetary welfare cost. As at

transfer stations waste is treated properly, no pollution arises there implying that ϱj = 0

for j ∈ J F . We calibrate ϱj at dumpsites using estimates from the literature on the social

costs of open dumpsites in developing countries (Table A3 provides details)

6 Equilibrium

We now characterize the general equilibrium of the model. Informal waste collection

and disposal are determined by the parameters {κ, µH ,ν, µC , ϑ, δ, ι, ϱ}, model geogra-

phy
{
A,S, τ , ξ,NH,NBT

h

}
, availability of formal collection and communal containers{

FA, CA}, exogenous collection option attributes {P,F,T}, and characteristics of dis-

posal sites
{
ζ,Td,Rd

}
.

Given these primitives, the endogenous variables
{
π,ϕ,q,J ,pBT,p

d
}
adjust such

that household demand is given by (2), Borla Taxi’s route choices and collection quantity

follow (7) and (12), collection markets clear (13), disposal sites set their profit maximising

prices (18), and only profitable disposal sites remain in the market.

7 Welfare and social optimum

In a similar vein to Conwell 2025, we define welfare Ω as the sum of the expected

utility of households (3) and collectors (8) in monetary terms, together with profits of the

24Agbogbloshie Sikkens is located close to one of city’s biggest slums and by the Korle Lagoon. The

rest of the dumpsites are located in low-density areas, by large surfaces of free land near water bodies.
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disposal sites (16) as well as of formal collection and communal container providers (15),

net of neighbourhood waste pollution (4) and dumpsite pollution (19) to obtain

Ω ≡
∑
a

NH
a

UH
a

|κ1|
+
∑
h

NBT
h

UBT
h

ν1
+
∑
j

ΠD
j +

∑
a

ΠF
a +

∑
a

ΠC
a − EA − EI (20)

The above is a monetary welfare metric. Dividing UH
a by |κ1| and UBT

h by ν1 yields

the monetary equivalent of the expected utility of households and collectors, respectively,

while profits and environmental damages are already defined in monetary units. Unlike

private actors, the social planner accounts for the two types of market failures. First, the

planner internalises the environmental damages associated with uncollected or improperly

disposed waste. Second, the planner corrects the distortions arising from market power

of disposal sites.

The social planner’s problem can be decomposed into two steps. In the first step,

the planner chooses the allocations
{
π̃, ϕ̃, q̃

}
that maximise welfare for a given set of

disposal sites J , subject to collection and disposal market clearing, as well as all shares

being non-negative and summing up to one at the relevant levels of aggregation. In the

second step, the planner then chooses the set of active disposal sites J̃ that maximises

welfare Ω. We define p̃ =
{
p̃BT , p̃F , p̃C , p̃

d
}
as the set of prices that the planner needs to

impose to decentralise the socially optimal allocations for a given set of disposal sites J ,

that is to achieve that {π (p̃) ,ϕ (p̃) ,q (p̃)} =
{
π̃, ϕ̃, q̃

}
. A formal characterisation of

the social planner’s problem as well as all derivations are detailed in Appendix A.7.2. It

follows that a simple Pigouvian policy implements the socially optimal allocations.

Proposition 1. Given a set of active disposal sites J , the social optimal allocations

can be implemented by setting the disposal price at site j to

p̃dj = ζj + ϱj − ι , (21)

by setting the prices of formal collection and communal containers to

p̃a,o = mca,o − ι , (22)

and the Borla Taxi prices p̃BT being determined as the vector of prices ensuring collec-

tion market clearing (13). Whereby demand, route choices, and collection quantities are

governed by (2), (7), and (12), respectively.

This result reveals that the planner corrects three aspects. First, monopolistic price

setting at disposal sites is eliminated and prices are instead set to equal marginal costs ζj.
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Second, disposal prices at dumpsites incorporate the pollution damages ϱj they generate,

thereby correcting waste flows and collection quantities. Third, the planner lowers the

unit costs of all waste collection options that reduce neighbourhood waste pollution by

lthe value of averted damages ι. Together, these adjustments address market failures

arising from environmental externalities and the market power of disposal sites. We

obtain the standard Pigouvian result that prices must equal marginal costs plus marginal

environmental damages. For the formal collection and communal container options we

had assumed that status quo pricing regime already follows this rationale (14), therefore

no additional adjustments are required in those sectors. Expression (21) further highlights

the trade-offs faced by the planner in regulating dumpsites. On the one hand, they are

desirable because they contribute to reducing neighbourhood pollution; on the other hand,

they generate pollution themselves and should therefore be costly to use.

Since both the Borla Taxi prices and the disposal price in the competitive equilibrium

can only be obtained numerically, an analytical comparison with the prices that implement

the socially optimal allocations is not feasible. We therefore conduct this comparison as

part of our quantitative analysis in Section 9.1.

8 Estimation

We divide the estimation of the structural parameters governing households’, col-

lectors’, and sites’ choices in two stages, circumventing simultaneity issues in both the

collection and disposal sides of the market. We present empirical details and results for

both stages in Sections 8.1 and 8.2

We estimate the parameters κ that govern the demand of households for waste col-

lection in (1) using three survey experiments. To estimate the price elasticity (κ1), we

run incentivised BDM and TIOLI demand elicitation exercises with 60% and 40% of the

households in our sample, respectively. Incentive compatibility ensures that respondents’

dominant strategy is to bid their true maximum willingness-to-pay. We estimate the

remaining parameters in (1), determining the sensitivity of households’ choices to the

other attributes of waste disposal options using a stated preference survey experiment,

where we randomly vary the values of disposal options’ attributes. Due to the controlled

nature of the experiment, we can estimate the parameters independently from the rest

of the model. This reduces the dimensionality of our estimation problem and eliminates
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simultaneity between household demand and collection supply, allowing us to focus on

the collector-disposal site interaction in the second stage. Given household demand pa-

rameters, we estimate the taste parameters ν on collectors’ discrete choice problem and

disposal sites’ marginal costs ζ jointly, using a nested-fixed-point algorithm which lever-

ages both aggregate market outcomes (disposal prices and market shares) and individual

data on collectors routing behaviour. To validate the structural estimates, we also esti-

mate the semi-elasticity with respect to commuting distance (ν2) with a gravity equation

that leverages our route data. We additionally provide descriptive evidence from a field

experiment that allows us to understand how collectors respond to changes in disposal

fees.

8.1 Survey experiments: demand for waste collection

We randomly allocated 60% of households in our sample to conduct an incentivised

willingness-to-pay demand elicitation exercise following Becker et al. 1964 (BDM). The

remaining 40% made an incentivised take-it-or-leave-it (TIOLI) choice and participated

in a stated preference survey experiment.

8.1.1 BDM

We used the BDM mechanism to estimate willingness to pay (WTP) for waste col-

lection services. To create real incentives in both our BDM and TIOLI experiments we

offered households to collect their waste and arranged it in collaboration with Borla Taxis

or community members.25 We asked household members to state their bid for having

their waste collected at the end of the interview through the collection service we pro-

vided. Enumerators were instructed to bargain progressively until respondents stopped

increasing their bid. Respondents drew a random price from a sealed envelope, containing

uniformly distributed prices with varying support based on enumerators’ assessments of

the size of the waste bag. If the drawn price was lower or equal to the bid, the individual

had to purchase our waste collection services at the drawn price and we collected their bag

of waste. If the random price turned to be higher than the household’s bid, we did not

take the bag of trash. BDM is incentive compatible (i.e. individuals’ dominant strategy is

to bid their true maximum WTP for waste collection services) because the reported WTP

25When this was not possible, winning respondents were given cash to pay for next day collection at

the end of BDM exercise.
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does not affect the price paid, only whether the individual gets their waste collected.

Unlike in many of its applications, in our BDM mechanism we are not measuring

WTP for the same standard good across households. In the day of the experiment, dif-

ferent households may have different quantities of waste accumulated and hence different

WTP for our waste collection service. To adjust for differences in the quantity of available

waste at the time of the survey, we weighted every bag of waste using identical scales (see

Figure A20 for an example) and estimate willingness to pay in GHS/kg.26 This allows us

to obtain a consistent measure of WTP accounting for differences in the size of available

waste.27 We include the distribution of measured waste bags’ weights in Figure A22. As

expected, the randomisation of participation across demand elicitation mechanisms yields

very similar distribution of waste bag’s weights for TIOLI and BDM respondents. In

Figure A23 we present the intuitive upward relationship between respondent bid and the

weight of the waste bag. Both the variation observed in the weights distribution and the

positive relationship between weights and bids justify our approach. Figure 8 displays

the distribution of participants’ bids per kg of waste and the resulting raw cumulative

demand. We provide formal estimates of the demand curve in the next section.

8.1.2 Take-it-or-leave-it (TIOLI)

With the remaining 40% of households we conducted an incentivised TIOLI demand

elicitation exercise and an un-incentivised stated preference survey experiment. For the

TIOLI exercise, we selected three points in the GHS/kg distribution. We chose the points

based on the 2023 Ghana Annual Household Income and Expenditure Survey, where

households report some information on their expenditures for solid waste collection. Re-

spondents were instructed to draw prices per kg from previously prepared envelopes with

uniform distributions. Enumerators weighted respondents waste bags and registered both

the drawn price and the bag’s weight in the tablet used in the survey. The software then

calculated the total price (GHS), which interviewees then had to accept or reject, with no

bargaining allowed. We offered respondents the same collection service used with BDM

26If enumerators could not weigh respondents’ waste bags, either because it was too heavy or it was

arranged in a way that made it challenging, survey participants were asked to participate in the stated

preference experiment instead. In each of these cases, enumerators took pictures of the waste bag. We

include examples that illustrate the challenge in obtaining weight measures in Figure A21.
27Informal Borla Taxis price based on their estimates of the weight of waste bags, so this is a relevant

measure.
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Figure 8: Bids and cumulative demand
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Notes: Panel A represents the histogram of raw respondent bids in the BDM demand elicitation exercise per

kg of waste, as measured for each respondent using identical scales. Panel B displays the resulting cumulative

demand, obtained by aggregating the number of respondents willing to pay at each price or higher. 1080

households participated in the BDM elicitation exercise.

participants. Hence accepting the offered price meant that we took respondents waste

and they had to pay the accepted price.

In Figure 9 we present the demand estimates for both the BDM and TIOLI mech-

anisms, generated using data from a total of 685 BDM final bids, and 394 TIOLI ac-

cept/reject observations (115 at 0.5 GHS/kg, 124 at 2 GHS/kg, and 155 at 3.5 GHS/kg).

The BDM estimates reflect for each price/kg (on the x-axis), the share of households bid-

ding a value greater or equal than such price. The TIOLI point estimates in red indicate

the share who chose to purchase at each of the three selected price points after random

selection.

Our BDM and TIOLI estimates are statistically indistinguishable. While TIOLI

estimates appear slightly higher at greater prices, we cannot reject the null hypothesis

that BDM and TIOLI estimates are the same at any of the TIOLI price points (0.5

GHS/kg, 2 GHS/kg, and 3.5 GHS/kg), using 95% confidence intervals and standard

errors clustered at the survey EA-level for each mechanism. We used different samples

for each mechanism, with respondents randomly assigned to conduct the BDM (60%) or

“stated preference + TIOLI” (40%) experimental exercises. The fact that our estimates

for the two elicitation exercises coincide gives reassurance on their accuracy.

Second, it is worth noting that while over 80% of respondents are willing to pay for

38



door-to-door waste collection at 0.5 GHS/kg, prices would need to drop even further to get

to full collection. For an average waste bag of 4 kg this means dropping below 2 GHS for

a one-time collection. For context, in our app transaction data only 3% of transactions

are below 2 GHS. Demand at low prices is very elastic, with around a 50 percentage

point decline in the share purchasing when prices increase from 0.5 to 1.5 GHS/kg. At

higher prices demand is inelastic but the share willing to purchase collection services

drops below 20% at a price of 2 GHS/kg. We split our sample based on self-reported

monthly household income and report estimates for the BDM and TIOLI for the resulting

three income groups in Figure A24. While noisier, the analysis does not support notable

differences in willingness to pay across income groups. However, for prices significantly

higher than equilibrium levels, it might be hard to capture heterogeneity in WTP with

an incentivised mechanism if the good/service for which households are bidding is readily

available outside of the experiment.

As detailed later in Section 8.1.4, we scale up our one-time GHS/kg estimates using

our measures for daily waste generation per household and households’ chosen frequency of

collection, to obtain demand estimates with respect to weekly costs of collection for total

weekly waste generation. These estimates suggest that while about 70% of households

are willing to have their waste collected at the current market price of 18 GHS per week,

a 50% price reduction to 9 GHS would raise this share to around 90%.

8.1.3 Stated Preference Experiment

We designed an stated preference survey to estimate all parameters determining

household demand for waste disposal/collection services in (1). Namely, monetary values

of time costs, frequency, and the need for sorting, the sensitivity to collection prices,

and the utility cost or benefit of each utility option with respect to Borla Taxis (κo in

Equation 1). We asked respondents to picture a hypothetical choice across all waste

disposal options commonly available, and used a series of choice cards (i.e. choice sets)

with exogenously-varied fees, frequency, time cost, and sorting requirements. Households

were asked to choose their preferred option amongst Borla Taxis, formal truck collection,

communal disposal at containers, or burning/dumping their waste indiscriminately. We

always included all four options in each choice card, and the same four attributes of waste

disposal options. Respondents made eight choices each across eight cards with randomly

varying attribute values. Figure 10 provides an example of the choice cards we used. We
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Figure 9: BDM and TIOLI demand estimates
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Notes: BDM demand curve, with a 95% confidence band and standard errors clustered at the

survey enumeration area level. TIOLI demand at three price points (GHS/kg) –0,5, 2, and 3.5,

with 95% confidence intervals and EA-level clustering of standard errors. The BDM demand curve

reflects the share of households that bid higher or equal than the indicated price in GHS/kg. The

TIOLI point estimates reflect the share of households that accepted the price (i.e. purchased the

collection service) at each of the random price points. We use point-wise inference from logit

regressions at prices/kg going from 0.5 to 7.5 with 0.5 increments. There are a total of 685 clean

BDM final bids, and 394 TIOLI accept/reject observations (115 at 0.5 GHS/kg, 124 at 2 GHS/kg,

and 155 at 3.5 GHS/kg).

chose the values of the attributes based on the 2023 Ghana Annual Household Income

and Expenditure Survey, which provides some measures of expenditure on solid waste

disposal, as well as on focus groups discussions we conducted with households in two

neighbourhoods (low and middle income) and with waste collectors (close to one of the

main open dumpsites), in January 2024.

Using the stated preference data we estimate the demand parameters for household

waste disposal choices. Respondents faced choices among disposal alternatives or options

o in a choice set S. Options in each choice scenario vary exogenously in their price po,

frequency fo, waiting time to, and sorting requirements so. An individual i chooses waste
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Figure 10: Stated preference survey example choice set

Notes: This figure shows an example of a choice card

(choice set) from our stated preference survey. It in-

cludes a hypothetical choice across four waste disposal op-

tions/alternatives (the four columns). The rows correspond

to the attributes/characteristics of waste disposal options. In

the cells we include the randomly assigned values of the at-

tributes for each waste disposal option. These vary across

choice sets but are the same across respondents.

disposal option o in a choice set S with probability

πio =
exp (κo + κ1po + κ2fo + κ3wo + κ4so)∑
h∈S exp (κh + κ1ph + κ2fh + κ3th + κ4sh)

(23)

The option-specific constants κo capture intrinsic preferences for each disposal method

relative to the normalized option (Borla Taxi). These parameters reflect unobserved

attributes including social norms, environmental concerns, and health considerations that

affect disposal choices beyond the explicitly modelled attributes. The ratio
∣∣∣κo

κ1

∣∣∣ measures

the monetary equivalent of these intrinsic (dis)utilities in GHS terms. The price coefficient

κ1 identifies households’ sensitivity to collection/disposal prices, with
∣∣∣ 1
κ1

∣∣∣ identifying
the Gumbel shape. The attribute coefficients κ2 through κ4 capture preferences for the

remaining service attributes, with ratios
∣∣∣κk

κ1

∣∣∣ being households’ willingness-to-pay for
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marginal improvements in collection frequency, reduced waiting time, and no sorting

requirements, respectively.

We estimate via maximum likelihood the multinomial logit discrete choice model

in (23), which is consistent with the choice probabilities in (2). The sample includes

all households interviewed in our stated preference module, who also participated in the

TIOLI elicitation exercise.

In the estimation, we assume that idiosyncratic taste shocks are independently and

identically distributed across respondents, but allow them to be correlated across the

choices made by a given respondent. We test for attribute interactions to identify whether

time cost sensitivity varies with disposal options. The intuition being that waiting time at

home for door-to-door collection yields less disutility than the walking time to a container

or more importantly than the time involved in burning waste. We also test for whether a

nested logit specification is desirable.28

Table 4 reports the estimates. Consistent with the demand curves in Figure 9, house-

holds display strong collection/disposal price elasticity. In the pooled logit (Column 1),

the price coefficient of -0.0633 implies that a GHS 10 increase in weekly costs reduces

the probability of choosing a service by roughly 23% at the baseline Borla Taxi market

share (approximately 65%), corresponding to a 46% reduction in odds.29 In the nested

logit (Column 7), the corresponding coefficient (-0.0518) yields similar magnitudes. Col-

lection frequency also matters for waste collection/disposal choices. In our discrete choice

experiment, the frequency attribute is coded as the number of days between successive

collections, so higher values represent less frequent (more delayed) service. In Column 1,

the coefficient of -0.0265 reflects the disutility of each additional day of delay. A one-day

increase in delay reduces the odds of choosing a service by about 2.6% at the baseline

price.30 Translating this into monetary terms, the ratio
∣∣∣κ2

κ1

∣∣∣ = 0.42 implies households

are willing to pay about 0.42 GHS/week to reduce the delay by one day (equivalently, to

gain one additional collection day per week). Moving from once-a-week collection (7 days

between collections) to daily collection (1 day between collections)—a reduction in delay

of 6 days—is therefore worth about 2.5 GHS/week to the average household, equivalent

28As nests we include 1) door-to-door options vs the rest, and 2) Polluting options vs the rest.
29At baseline share P0 = 0.65, a GHS 10 price increase yields new probability P1 ≈ 0.50, or (0.50 −

0.65)/0.65 ≈ −23%. The odds change is e−0.0633×10 − 1 ≈ −46%.
30e−0.0265×1 − 1 ≈ −2.6%.
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to 14% of the average weekly Borla Taxi collection price.

Table 4: Stated preference estimates

Logit Nested-Logit

(1) (2) (3) (4) (5) (6) (7)

Price -0.0633∗∗∗ -0.0624∗∗∗ -0.0607∗∗∗ -0.0640∗∗∗ -0.0453∗∗∗ -0.0350∗ -0.0518∗∗∗

(0.003) (0.003) (0.007) (0.006) (0.005) (0.020) (0.007)

Frequency -0.0265∗∗∗ -0.0272∗∗∗ -0.0187∗∗ -0.0135∗ -0.0122∗ -0.0160∗ -0.0216∗∗∗

(0.004) (0.004) (0.008) (0.007) (0.007) (0.008) (0.004)

Time 0.000111

(0.002)

Time × Door-to-Door 0.00290 0.0154∗∗ 0.00945 0.00818 -0.0000665 0.00434

(0.003) (0.006) (0.006) (0.006) (0.003) (0.003)

Time × Communal 0.00622 0.0330∗∗ 0.0184 -0.000851 0.00399 0.00796

(0.005) (0.015) (0.012) (0.012) (0.003) (0.005)

Time × Burn/Dump -0.0330∗∗∗ -0.0389∗∗∗ -0.0213∗∗ -0.0332∗∗∗ -0.0244∗∗∗ -0.0291∗∗∗

(0.005) (0.010) (0.011) (0.012) (0.008) (0.006)

Sort -0.0233 -0.0185 0.206∗∗∗ -0.0217 0.0244 -0.0148 -0.0130

(0.028) (0.028) (0.055) (0.059) (0.049) (0.018) (0.024)

Constants

Formal -0.260∗∗∗ -0.262∗∗∗ -0.269∗∗ -0.350∗∗∗ -0.115 -0.146∗ -0.215∗∗∗

(0.047) (0.047) (0.106) (0.088) (0.089) (0.083) (0.044)

Communal -1.249∗∗∗ -1.310∗∗∗ -1.734∗∗∗ -1.502∗∗∗ -1.422∗∗∗ -0.745∗ -1.394∗∗∗

(0.069) (0.104) (0.273) (0.232) (0.220) (0.404) (0.098)

Burn/Dump -2.358∗∗∗ -1.988∗∗∗ -0.970∗∗∗ -1.991∗∗∗ -2.282∗∗∗ -2.102∗∗∗ -1.966∗∗∗

(0.108) (0.125) (0.205) (0.235) (0.279) (0.126) (0.121)

Respondents 963 963 211 250 258 963 963

Observations 7704 7704 1688 2000 2064 7704 7704

Income category Lowest Low Middle

Notes: * 0.1 ** 0.05 *** 0.01. We cannot reject the null of no correlation within either “door-to-door vs rest” or “burn/dump

vs rest” nests. We therefore use the logit model as our preferred specification.

Time costs do not appear to influence choices on average across disposal options

in the baseline logit model (Column 1). However, Column 2, reveals differences in the

disutility of time across disposal methods. While households are not sensitive to the

time involved in door-to-door collection options or in walking to a container, they are

so for burning/dumping. The negative coefficient of -0.0330 in Column 2 implies that

households are willing to pay
∣∣−0.0330
−0.0624

∣∣ ≈ 0.53 GHS/week to avoid each an extra minute
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of active disposal time via burning or indiscriminate dumping. Ten additional minutes of

burning/dumping is thus valued at about GHS 5.3/week in disutility. This is consistent

with the direct pollution and unpleasantry involved in the activity, and the increasing risk

of being caught. For communal containers, the time coefficient is smaller and statistically

insignificant. For door-to-door services, the time coefficient is near zero and not significant,

consistent with the idea that passive waiting at home is much less burdensome than active

travel or burning. The sorting requirement is generally insignificant, meaning recycling

efforts do not generate disutility for households.

The option-specific constants (κo) capture intrinsic preferences relative to Borla Taxi

(informal door-to-door). In Column 1, the constant for formal truck collection is -0.260,

implying that a price reduction of 4.11 GHS/week in formal services are needed to make

households indifferent between formal trucks and Borla Taxi, all else equal. While per-

haps surprising, formal services require registration, are often less reliable than Borla

Taxis, and may involve additional costs not modelled explicitly. For communal contain-

ers, the intrinsic penalty is larger (-1.249, about GHS 19.7/week lower WTP). These are

often congested and also unreliable. For burning/dumping, the utility cost is are signifi-

cantly greater (−2.358, or about GHS 37.3/week lower WTP). These point to utility costs

associated with more polluting, less reliable/convenient, or morally acceptable disposal

methods.

Lastly, we test for potential nesting structures. This is relevant because policy im-

plications may change if some options are closer substitutes than others. For instance, if

Borla Taxi collection and formal truck collection are close substitutes, then improvements

in the Borla Taxi market would draw demand primarily from formal truck collection

rather than from burning or dumping, leading to very different welfare implications. In

Column 6, we estimate a nested Logit model in which one nest contains the two door-

to-door options (Borla Taxi and formal truck collection) and the other nest contains the

remaining options. In Column 7, we nest all three non-polluting options together. In both

specifications, the dissimilarity parameter is statistically indistinguishable from one. This

suggests that substitution patterns across options are similar, and that improvements in

Borla Taxi services would draw demand from all other options, including burning and

dumping.
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8.1.4 Aggregate predictions and validation

We use our stated preference estimates to predict demand for each disposal option,

based on the observed equilibrium attribute levels reported by survey respondents for

the options available to them, and excluding alternatives not available in their area. We

compute the choice probabilities in (2) for each respondent and option and aggregate

these probabilities to obtain city-wide estimates for Accra. Figure 11 (Panel A) presents

the predicted primary and secondary disposal method choices from the stated prefer-

ence experiment, together with survey responses on main and secondary disposal choices.

Overall, the predictions closely match the survey responses across disposal options for

both main and secondary choices. Around 80% in both the survey and our model predic-

tions rank Borla Taxis as their main choice. Formal trucks and containers are the main

choice for around 5% of respondents and burning/dumping constitutes the main disposal

choice for between 2–4% of households in data and model respectively. Figure 11 (Panel

B) displays the predicted market shares at the city level. We estimate that Borla Taxis

capture approximately 65% of the market, and importantly around 20% of households

burn or dump their waste. The remaining households use either formal collection services

or communal containers (both options covering less than 10% of the market).

Two additional validation exercises support the robustness of our estimates. First, we

scale up the BDM and TIOLI estimates (with respect to GHS/kg) to compare them with

the stated preference estimates (with respect to weekly GHS cost). To do this, we rely on

our bag weight measures, and construct an average daily waste generation per capita rate

of 0.62 kg. We use the per capita weight for those that express daily collection frequency,

and half of the per capita weight for those that express collection frequency every two days,

because Borla Taxis tend to serve neighbourhoods daily. We do not know for how long

those that express once-a-week collection frequency have had their waste accumulating

by the time of the interview. However, the similarity in the weight-per-capita measures

across groups expressing different collection frequencies is reassuring. Figure A25 provides

details on the data behind our average daily per capita waste generation estimate.31 To

convert the BDM and TIOLI estimates, we multiply the prices in GHS/kg times the

average household size of 4, the estimated daily waste generation per capita (0.62), and

the number of days in a week. This gives us BDM and TIOLI estimates with respect

31As reference figures, in 2020, the daily waste generation per capita was 0.51 kg in peri-urban and

low-income areas, 0.69 kg in middle-income areas, and 0.91 kg in affluent neighbourhoods.
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Figure 11: Predicted and survey choice shares
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Notes: Panel A compares predicted choice shares from the stated preference model with survey responses for main

and secondary disposal options. Panel B presents aggregate predicted market shares based on all choice probability

predicted data. The predictions are generated using the estimates in Table 4, which we obtain from the data we gather

in the stated preference experiment. It covers 963 respondents and 7704 observations. The number of respondents is

determined by the random assignment of 40% of total survey respondents to participate in the TIOLI mechanism and

stated preference experiment. Additionally, those respondents originally assigned to conduct the BDM mechanisms,

but whose waste bags could not be weighted in the interview were assigned to participate in the stated preference

experiment as well. To generate the figure in Panel A, we select the first and second probability for each respondent.

To generate the figure in Panel B, we use all predicted probabilities across individuals and disposal options.

to weekly costs in GHS, which we can compare to our stated preference estimates. This

is well understood graphically in Figure A26, where we overlap the demand curve we

construct with the stated preference estimates and measured attribute values with our

BDM and TIOLI estimates for weekly costs. We cannot reject the null that the predicted

market shares at equilibrium prices are the same using stated preferences, BDM, and

TIOLI estimation. Moreover, at two of the three price points in the TIOLI exercise, the

estimates for stated preference and TIOLI coincide. The sample of households for the

TIOLI and stated preference experiment are the same, lending credibility to the accuracy

of our estimates. Methodologically, this comparison between incentivised elicitation and

stated preference surveys may help validate similar exercises in future research.

We close this section with an extra validation exercise. In Figure A27, we present
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the correlation between the predicted dump/burn shares across enumeration areas and

our measure of waste pollution. For each bin of the trash count measure we represent

the average predicted burn/dump probability. The positive correlation suggests that our

predictions are capturing actual behaviour, which we measure via our objective waste

pollution data.

8.2 Collector route choice parameters and disposal sites costs

The collector objective function in (5) depends on collection prices, disposal site prices

pdj , recycling rebates, commuting distances, and waiting time. We assume that recycling

rebates, commuting distances and waiting time at disposal sites are exogenous. Based

on our observations, waiting times are not determined by congestion at sites or limited

capacity. Instead, they are a feature of sites’ technology. At transfer stations processes

take longer because tricycles’ weight is measured at a loading platform, and waste is

unloaded and compacted following environmental standards. At dumpsites, collectors

wait briefly to pay, unload some recyclables, and find a space to dump their waste over

existing piles of refuse.

The identification challenge therefore stems from the endogeneity of collection and

disposal prices. The estimated household demand parameters determine collection de-

mand in each area for each collection price. Collector taste parameters ν determine area

choices (collection supply), with collection prices entering via profits in collectors’ objec-

tive function in (5). Market clearing in each area of the city determines collection prices,

for collector and household parameter values. Collector taste parameters rule disposal

site choices. Disposal sites in turn, internalise those choices in setting up their disposal

fees, given their unobserved marginal costs of waste processing, according to (18). The

Nash-Bertrand equilibrium determines disposal prices, for collector parameter values and

disposal sites marginal costs. To address this simultaneity in both collection and disposal,

we estimate collector taste parameters ν and disposal sites costs ζ using the following

nested-fixed-point algorithm that leverages Simulated Method of Moments (SMM) in the

spirit of Imbens and Lancaster 1994.

(1) We test a candidate cost vector ζ and a candidate vector of taste parameters ν.

(2) For the test vectors ζ and ν, we simulate sites strategic maximisation behaviour, and

solve for the Bertrand-Nash equilibrium site prices pd(ζ,ν).
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Under Bertrand competition, each site’s optimal price must satisfy the first-order condi-

tion in (18). Rearranging gives the best-response function

pdj = ζj −
λj(p

d)
∂λj(pd)

∂pdj

(24)

where λj(p
d) depends on all prices pd = (pd1, ..., p

d
J). The equilibrium prices form a system

of J non-linear equations. We can solve numerically for equilibrium prices for any vector of

marginal costs ζ and of taste parameters ν using fixed-point iteration (until convergence

– ||pd,k+1 − pd,k|| < ϵ), where each site j chooses its price to maximize profits given

competitors’ prices

pd,k+1
j = argmax

pj

{
(pj − ζj) · λj(pj,pd,k

−j )
}

These prices pd(ζ,ν) and the taste parameters ν yield predicted market shares for each

disposal site sj(ζ,ν)

sj(ζ,ν) =
λj(p

d(ζ,ν))∑
j′∈J λj′(p

d(ζ, ν))

where waste flows to each site follow the expression in (17), using the route logit shares.

(3) Given household parameters and the area choices determined by the parameters in ν,

market clearing in all localities determines collection prices.

(4) We compute the log-likelihood for individual collector routing using our survey micro-

data L(ν) = 1
N

∑N
i=1 lnPhi,ai,ji(ν) and two moment distances using aggregated data. We

compute the distance between the simulated equilibrium disposal prices and the disposal

fees we measure in the survey, and the distance between the predicted disposal shares and

the shares we measured in our disposal sites inventory exercise (based on actual collector

flows to each site), forming the moment vector

m(ζ,ν) =

((
pd(ζ,ν)− pd,obs

)
/pd,obs(

s(ζ,ν)− sobs
)
/sobs

)

(5) We calculate the value of a joint objective function that includes the negative log-

likelihood from collectors route choices and the moment vector m(ζ,ν).

(6) We iterate over candidate vectors and select the vector of costs and parameters that

satisfy collection market clearing, Nash equilibrium at disposal, and minimise a joint

objective such that:
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ζ̂, ν̂ = argmin
ζ,ν

{−L(ν) +m(ζ,ν)′Wm(ζ,ν)}

The joint estimator adds the (normalised) log-likelihood to an SMM quadratic. Both

scores have the same weight, with the negative log-likelihood effectively being treated as

an additional moment. Intuitively, under candidate disposal costs and collector taste pa-

rameters, we simulate collector route choices, and sites’ disposal fees and market shares,

ensuring the collection markets clear and disposal sites best respond to each others’ strate-

gies. We find the combination of vectors such that the model outcomes most closely match

the disposal sites prices, market shares observed at sites, and collectors’ individual be-

haviour.

In this procedure, the marginal costs are identified through the Bertrand pricing

conditions. Sites with higher observed prices relative to their market shares (controlling for

location and competition) must have higher marginal costs to rationalize their pricing in

equilibrium. The estimated collector preferences ν̂ pin down the competitive interactions

between sites. The estimated household demand parameters discipline collector routes.

This identification strategy is valid under the assumption that disposal prices are set

competitively given costs.

We estimate profit and commuting semi-elasticities of 0.07 and -0.3 respectively,

with respect to GHS and kilometres (We include all calibrated values in Table 8). The

estimated semi-elasticities imply that collectors value proximity very highly, trading off

roughly 4 GHS in expected profit for each kilometre of additional route distance, for

an average possible route distance of 44 km.32 This magnitude is plausible given slow

tricycle speeds and traffic congestion. The coefficient on profits (0.07) yields realistic

choice elasticities and aligns well with the responses and flows observed in the survey as

we outline in the model fit section (8.3). The estimated operational costs at disposal

sites, which we present in Table 5, range from 0.2 GHS to 1 GHS per bag for dumpsites

and from 0.9 GHS to 2.4 GHS for transfer stations, reflecting the higher operational costs

of formal waste processing. Across sites, our algorithm achieves very good fit for model

prices and market shares. Finally, perhaps surprisingly, travel times (in hours) are much

less valued than commuting distances or profits, with a very small point estimate.

32Figure A17 shows the distribution of routes distances in kilometres for all possible collection disposal

routes and the ones actually chosen by collectors in our data.
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Table 5: SMM estimation: Disposal costs, prices, and market shares

Marginal Cost Price (GHS) Market Share

Name ζ̂i Model Data Model Counts

Agbogbloshie Sikkens 1 1.89 1.87 0.34 0.27

Mc Carthy 0.145 1.29 1.41 0.28 0.31

Mallam/Tetegu 0.197 1.06 1.17 0.095 0.10

Glefe 1 1.56 1.32 0.10 0.07

Ashaiaman Adjie-Kojo 0.9 4.08 4.69 0.07 0.11

Pantang 1.9 4.43 5.14 0.04 0.06

Korlebu (IRECOP) 2.357 3.02 3.30 0.06 0.06

Notes: The table reports structural estimates for sites’ marginal costs, and model-implied prices and market

shares against their data counterparts. Market shares are calculated using the collector flows data at disposal

sites. Prices are the average reported by collectors per number of daily customers.

8.2.1 Gravity

To provide an additional empirical benchmark for the commuting parameter of collec-

tors’ route choices, which does not rely on the nested-fixed point strategy outlined above,

we estimate a gravity equation implied by the discrete choice structure in equation (7).

Taking logs of the predicted choice probabilities, the model predicts that the frequency of

trips between home location h, collection area a, and disposal site j declines exponentially

with route distance:

lnϕhaj = ν2τhajh + ψh + ξaj + εhaj, (25)

where ψh are home fixed effects and ξaj are destination fixed effects. A destination is a

full route, that is a collection area - disposal site pair. These fixed effects absorb home-

specific and route-specific characteristics, including profits and waiting times that are

common to all collectors from the same home location. We estimate equation (25) using

the observed route flows in the collector survey. Figure 12 shows these routes. Given the

sparsity of the route data, we estimate linear and Poisson Pseudo Maximum Likelihood

(PPML) versions of (25), including both home and route fixed effects. For consistency,

we report OLS estimates too, but these are challenged by the sparsity of the data. Unlike

in traditional gravity equations, our destination is a route, opening up many unused

combinations, leading to many singletons being dropped when including the route fixed

effects, and resulting in a low number of observations in the OLS specifications. Therefore

50



the Poisson Pseudo Maximum Likelihood (PPML) specifications are our preferred. With

considerably less sparse data, Ahlfeldt et al. 2015 obtain similar results for OLS and

Poisson specifications. Table 6 reports our results. Across these specifications, we find a

precisely estimated semi-elasticity of around −0.3 to −0.4 with respect to route distance

(in kilometres) using both locality level and district level specifications.33 The close match

between the structural and reduced-form estimates for the commuting semi-elasticity ν2

(–0.3 vs. –0.4) provides further validation for the importance of spatial frictions in the

model and for the consistency of the joint estimation algorithm.

Figure 12: Commuting routes based on the collector survey

Notes: The data flows are generated using survey data from 400 collectors. The map plots the flows

from home to collection area in dark gray and the flows from collection area to disposal sites. These

are plotted in red when the collector chooses a route involving a dumpsite for final disposal and in blue

when the collector chooses to dispose at a transfer station. The bigger circles in red and blue indicate

the location of dumpsites and transfer stations respectively

8.2.2 A field experiment to understand responses to disposal prices

In order to further complement our structural estimation, we run a field experiment,

in collaboration with the disposal sites in our sample. Between October and November

2025, we recruited 360 collectors operating at uncontrolled dumpsites and randomly as-

signed disposal subsidies according to the following design: We randomly assigned half

33The map in Figure A2 display the districts in the GAMA used in the aggregated specifications.
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Table 6: Gravity Equation Results for Waste Collector Route Choice

Locality Level District Level

OLS Poisson Poisson OLS Poisson Poisson

Distance (km) -0.165 -0.369*** -0.441*** -0.031 -0.245*** -0.405***

(0.247) (0.040) (0.051) (0.018) (0.031) (0.075)

Fixed effects Home + Route Route Home + Route Home + Route Route Home + Route

Observations 18 6512 4298 37 1273 1273

R-squared 0.953 0.917

Pseudo R-squared 0.439 0.713 0.447 0.748

Notes: Gravity equation estimates based on collector survey data for Greater Accra. Observations are bilateral pairs of

collection and home localities (or districts) with 8 disposal sites. Distance measured in kilometres. Dependent variable

is log(probability) for OLS and flow count for Poisson specifications. Locality-level estimates use 46 home localities, 87

collection areas, and 8 disposal sites. In the absence of route fixed effects, the number of observations for OLS regressions

at the locality level would increase to 153. District-level estimates aggregate to 22 administrative districts. All models

include home and route (collection-disposal) fixed effects. Standard errors in parentheses are heteroscedasticity robust. ***

p<0.01, ** p<0.05, * p<0.10.

of the recruited collectors a first-wave treatment. These collectors got offered a disposal

subsidy of 10 GHS at open dumpsites34 and a disposal subsidy of 100 GHS at waste

transfer stations. The daily subsidy offer lasted 10 days. We set up a stand near transfer

stations and open dumpsites to make payments and communicated its location to treated

collectors. The remaining half of the recruited collectors are the control group during

these first 10 days, as they did not get any disposal subsidy. The average payment per

disposal visit in our initial survey is 123.86 GHS at transfer stations and 43.06 GHS at

dumpsites. So our subsidy is sizeable, aimed at compensating for the high disutility from

commuting distances.

During the following 10 days of the experiment, the first-wave collectors stopped

receiving the disposal subsidy. Instead, the collectors that formed the control group during

the first 10 days received a second-wave treatment of 200 GHS. The first-wave treatment

group now serves as our comparison or control group for second-wave treated collectors.

The variation induced by the difference in the subsidy value across these two otherwise

comparable groups on average is useful, as it holds constant any characteristics of the

experiment that might affect take-up or differ from the government lowering collection

34This was done to ensure no resistance from dumpsite operators and to assess broader effects of

disposal price reductions.
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prices at transfer sites (the ideal treatment for construct validity). It allows us to compare

responses of treated collectors to the incentive across wave groups, so we exploit both

across- and within-wave variation. We collect baseline data on a series of characteristics

upon recruiting collectors at uncontrolled dumpsites, and a series of real-time transaction

and survey data throughout the entire period of the experiment.

Transaction Data. We again incentivised collectors to register collection and disposal

transactions on our app on a daily basis from the baseline registry until the end the

experiment. Enumerators monitored in-person, on the app, and via callbacks the data

registration process and filled daily collector reports, complementing the collector self-

registered data.

Collector Daily Surveys. We collected daily information via short forms and a registry at

all disposal sites. Everyday, enumerators called collectors and ask questions on two set of

outcomes, related to both sides of the collection-disposal market. We gathered information

on the number of customers served by collectors, the areas where they collect, and their

collection revenues. On the other hand, we ask about the choice of disposal site, the

price paid for disposal, and the waiting time. The main outcome of interest is the chosen

disposal site. Additionally, at each site, enumerators kept a record of the payment claims,

that is the collectors that received 10 GHS and 100/200 GHS payments.

Table 7 shows the balance of key collector outcomes at baseline. Across a wide

range of outcomes, the collectors in our baseline registry are on average statistically

indistinguishable. The collectors included in the sample are those that on some day

of the past week at the time of the survey had disposed of their waste at an uncontrolled

dumpsite.

8.2.3 Experimental descriptive results

The first descriptive result on how collectors respond to prices comes from a direct

comparison of subsidy take-up across treatment waves. Figure 13 represents treatment

take-up for both experimental waves. In gray, we include the total claims made across

dumpsites and transfer sites. It seems that even at 100 GHS, it took four days for collectors

to understand and get used to the intervention, and start claiming payments. After this

period, the total number of claims is around 20% of the wave 1 treatment group. The

majority of these claims were made at dumpsites. This is represented by the black line.

However, we do see some switching towards transfer stations. The blue line is the number
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Table 7: Balance of Baseline Characteristics

Wave 2 Treatment Wave 1 Treatment Difference

Days worked per week 6.39 6.26 -0.13

(0.78) (0.89) (0.09)

Number of collection households 31.03 31.01 -0.02

(19.79) (18.62) (2.03)

Revenue from households (GHS) 556.51 504.58 -51.93

(553.40) (442.48) (52.87)

Search time (hrs) 4.98 4.97 -0.00

(1.71) (1.72) (0.18)

Separates waste 0.78 0.74 -0.03

(0.42) (0.44) (0.05)

Average disposal fee 44.66 49.44 4.77

(17.73) (34.80) (2.92)

Use Mallam as main regular dumpsite 0.23 0.19 -0.04

(0.42) (0.40) (0.04)

Use Mc Carthy as main regular dumpsite 0.36 0.37 0.01

(0.48) (0.48) (0.05)

Use Sikkens as main regular dumpsite 0.22 0.25 0.03

(0.41) (0.43) (0.04)

Use Glefe as main regular dumpsite 0.12 0.12 -0.00

(0.33) (0.33) (0.03)

Notes:Standard deviations in parentheses for columns (1) and (2). Standard errors in parentheses for column

(3).* p<0.10, ** p<0.05, *** p<0.01. The reported outcomes are the key variables in collectors’ daily operations.

The total number of observations is 359 collectors that dispose of at dumpsites during some day of the past

week.

of wave 1 collectors that claim subsidy payments at transfer stations, averaging around

6 over these period, remaining below 10% of the treated throughout the first wave (area

shaded in blue). The second wave shows a different pattern. While the total number of

claims remains constant, these are equally split across dumpsites and transfer stations,

meaning there are more collectors switching their routes. After 3 days of wave 2, collectors

are almost equally distributed across these two groups, with the number going to transfer

stations reaching 10% of the treatment group. This comparison across treatment waves

makes clear that collectors are responding to prices, and flows could be diverted towards

transfer stations.

The experiment is ongoing and the data collection via the daily forms is yet to be

completed. We will conduct further reduced form analysis using these forms and the
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baseline data. Ultimately, to complement our structural estimates of ν1, we will expand

our gravity equation estimation, introducing daily variation in (25). This equation then

becomes

lnϕhajt = ν1shajt + ν2τhajh + ψh + ξaj + ψt + εhajt (26)

Where shajt is the exogenously, and time-varying, component of profits we created

with the 10, 100, and 200 GHS subsidies to affected routes, based on the share of treated

collectors in each wave living in each area h. Route fixed effects will control for the

endogenous equilibrium pricing by disposal sites, and for the endogenous equilibrium

collection prices, which are both unlikely to respond to our time variation in route profits.

These are the time-invariant components of profits. We can also control for reported

prices and wait times each day through the forms to account for additional variation

in profits or route characteristics over time. Day fixed effects complete the strategy.

If the collected data allows for this specification, we can cleanly obtain complementary

estimates of ν1 and ν2, which rely on distances (net of home and destination fixed effects)

and experimental price variation. This is work in progress so in what follows we use the

estimates we obtained via our nested-fixed-point strategy, which match the reduced form

gravity equation and the observed data across a wide range of outcomes.

8.3 Summary and model fit

Table 8 takes stock of all parameter estimates and calibrated values. Using these

estimates, we solve the model for equilibrium prices and quantities in both collection and

disposal using the conditions in Section 6. Figure 14 provides a first assessment of model

fit by comparing model-implied collection and disposal routes to those observed in the

Borla Taxi survey. Figure 15 extends the comparison between the data and model-implied

values to the rest of our datasets and outcomes. The model matches the data well. First,

the predicted collection flows on each home location-collection area pair in Panel B of

Figure 14 mirror reasonable well those in the data (Panel A). The model captures the

concentration of trips in the centre of the city, with differences in density driven by the

difference between the number of collectors in the sample (400) and the model, which

is adjusted to reflect the total population of collectors (2500). The model also predicts

well the flows in the collection area-disposal site pairs. Importantly, it captures the higher

market share of uncontrolled dumpsites, the longer trips made by collectors disposing of

at this sites (in red), and in turn, the greater clustering of collection-disposal flows around
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Figure 13: Treatment take-up across experiment waves
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Notes: The figure represents the time series of subsidy claims at both open dumpsites and transfer stations

for both experimental waves. The are shaded in blue represents the first 10 days (wave 1). The area in red

the first 6 days of wave 2 (the experiment is ongoing). The gray line with square markers represents the total

number of payment claims. The black lines are the number of collectors claiming 10 GHS at open dumpsites.

The blue line is the number of wave 1 collectors that claim subsidy payments at transfer stations. The red line

represents the number of wave 2 collectors that claim subsidy payments at transfer stations. Sundays are not

reported in any of the waves, as enumerators did not work on Sundays.

transfer stations (in blue).

In Figure 15, we confirm that the model is able to replicate the remaining equilibrium

outcomes. Panels A and B show the relationship between data and model-implied values

for the targeted moments in our SMM estimation (disposal prices and shares), which are

also detailed in Table 5. The estimated costs, lead to a good match between disposal

prices in model and data, and are able to generate a market structure for disposal similar

to that in the data, with two dumpsites dominating the market with around 30% shares,

and transfer stations capturing between 5 and 10% of the market each only.

Panel C shows the relationship between the collection prices implied by the model

and the data observed in the app, averaged at the locality level. Note that while we
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Table 8: Calibration

Parameter Description Value Detail/Source

BDM, TIOLI, Stated Preference (DCE)

κF Formal truck utility cost -0.260 DCE (Table 4)

κC Container utility cost -1.249 DCE (Table 4)

κBD Burn/dump utility cost -2.35 DCE (Table 4)

κ1 Price elasticity -0.0633 DCE, BDM, TIOLI (Figure 9)

κ2 Frequency elasticity -0.0265 DCE (Table 4)

κ3 Waiting time elasticity 0.000111 DCE (Table 4)

µH Gumbel shape (household disposal) 1 Normalisation

Nested-Fixed-Point (ML & SMM)

ν1 Route profit elasticity 0.069 Collector survey

ν2 Route commuting distance elasticity -0.293 Collector survey

ν3 Disposal site waiting time elasticity -0.0001 Collector survey

µC Gumbel shape (collector route) 1 Normalisation

(ζ1, ..., ζ7) Disposal sites costs 7 × 1 Collector counts & Disposal fees

External calibration

ϑ Tricycle loading rate 0.15 Transaction data (Figure 6)

A Collection areas Collector survey

FA Formal truck access/availability A× 1 2021 Census

CA Communal container access/availability A× 1 2021 Census

P Formal truck and container prices A× 2 Household survey

F Disposal options frequencies A× 3 Household survey

T Disposal options time costs A× 3 Household survey

NH Household population A× 1 GHS data

NBT
h Collector home population A× 1 Collector survey

Td Disposal sites waiting time J × 1 Collector survey

Rd Disposal sites recycling prices J × 1 Collector survey

ι Local waste pollution costs 0.2 Waste pictures & survey (Table 2)

ϱ Dumpsite costs 1.65 ≈ Table A3

Notes: The table describes each model parameter/object, indicates the calibrated value, and provides a reference

to the data source or empirical strategy used for estimation. We group parameters in three panels according to the

estimation strategy. For the dumpsite social costs, we use the estimates in Jiang et al. 2024 & Rahim et al. 2013 for

open dumps in Beijing and Makassar, Indonesia. They account for the external costs of air pollution, GHGs, and

leachate using contingent valuation and life cycle assessments.

did not target or used transaction prices in the estimation, the model equilibrium prices

57



correctly match the level in the data, and capture reasonably well the variation across

localities. The linear fit (in blue) is close to the 45-degree line. Moreover, the variation

observed in the app data can be driven by differences in bargaining, waste weight, or

other factors we do not capture in the model. If the number of transactions registered in

a locality is relatively low, those differences can explain the observed noise. The model

however, struggles to generate some of the higher average prices –above 20 GHS– that we

observe in the data. Panel D shows the distribution of customers in both the survey data

(in red) and the model (blue). The model matches well the average but the distribution

is less spread than in the data. Again, differences in the size of waste bag or the type of

customer may drive part of this difference.

Finally, the full model, where collection and disposal prices are solved for in equilib-

rium, generates a very similar market share for collection to the one in Figure 11, with

a household demand share of 60% for Borla Taxis and slightly lower than 20% predicted

burning/dumping. This local waste pollution and the large market share of open dump-

sites call for policy design evaluation. Counterfactuals will seek to internalise all external

costs. Most importantly, the environmental damages associated with local waste pollu-

tion and waste volumes at illegal dumpsites. They will impose optimal pricing strategies,

politically feasible transfer station subsidies, and assess the currently proposed construc-

tion of new waste management infrastructure. We will evaluate changes in collection

and disposal outcomes relative to the model-implied baseline we have described in this

section.
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Figure 14: Collection and disposal flows (data and model)

Notes: The data flows are generated using survey data from 400 collectors. The model flows are generated

based on our predictions using the estimated total number of collectors operating in the GAMA, which is

2500, hence the difference in density across the two flows. In Panels A and B, in dark gray, we represent

the collection flows (from collector home location to collection area) in the data and model respectively.

In Panels C and D we represent the flows from collection areas to disposal sites. The colour of the flow

corresponds to the type of disposal site. Flows that end at an uncontrolled dumpsite are in red. Flows

that end up a transfer station are in blue. We use red and blue circles to represent the location of

dumpsites and transfer stations respectively.
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Figure 15: Model fit for collection and disposal
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Notes: We compare model predictions with survey data, app transaction data, and count data across key

market outcomes. Panel A plots predicted disposal prices against survey-reported disposal fees by collectors

for each site. The 45-degree line is the dashed red line. Panel B compares model-predicted market shares for

disposal sites with observed shares from the count data. These two objects are targeted in the SMM estimation.

Panel C shows collection prices from the model equilibrium, untargeted in the estimation, against prices from

the mobile app data. The solid blue line shows the fitted relationship and the dashed red line is the 45-degree

line. Panel D presents the distribution of the number of daily customers per collector for model (blue) and data

(red).
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9 Counterfactuals

We use the estimated model to quantify the gains from formal environmental regula-

tion that leverage Accra’s current Borla Taxi network and disposal sites. We start with the

decentralisation of the social planner allocation and characterise the welfare gains/losses

for households, Borla Taxis, the environment, transfer stations, and dumpsites that first-

best prices induce. We then compare these gains with that of feasible formal regulation

in the form of price subsidies at waste transfer stations. We decompose welfare gains for

different levels of subsidisation at transfer stations and assess these against the cost of

implementing them. We close this section by quantifying the gains from the currently pro-

poses government policies aimed at controlling solid waste disposal and displacing illegal

sites, which target the construction of new transfer stations at selected locations. In this

way, we use the model to evaluate the market impact of new public infrastructure.

These two policies (i.e. pricing and public infrastructure expansion) represent two

key margins of action for government to control waste disposal externalities in the current

public-private delivery context. On the one hand, the government may want to leverage

market forces where they work, upstream of the market, where competition amongst

collectors pushes prices down to meet households’ willingness-to-pay to get waste removed

at source. And simply correct prices to fully account for the downstream externalities

arising from disposal at dumpsites, which neither households, nor collectors, nor the gangs

operating dumpsites take into account. Second-best price controls/subsidies at transfer

stations represent this policy alternative. These policies will be effective if they are able

to compensate for the high transport costs collectors we estimate.

On the other hand, governments may choose to leverage the door-to-door collection

market but seek to replace illegal dumpsites as the source of final disposal. This means

that the government steps up to deliver the infrastructure and services downstream of

the market. This would require the government to cover/subsidise the cost of the in-

frastructure and gather the relevant information to deliver the service optimally to meet

collector demand and achieve pollution control goals. This policy alternative expands the

role of the government in the current public-private co-delivery, but the question remains

on how the market would respond and whether such displacement of informal disposal

occurs. We quantify the effectiveness of the construction of two new transfer stations

currently proposed by municipal authorities. These policies will be effective if they re-

duce transportation costs enough to compensate for the strong price differentials between
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dumpsites and transfer stations.

A final policy of interest, which we do not evaluate, is that of full formal public

delivery, where the government takes care (through a licensed utility company) of both

door-to-door waste collection and disposal services, with charges to households potentially

done indirectly via taxation or monthly bills. We do not model in detail the operations

of the company running collection trucks and the network of containers in the city. Thus,

understanding what policies may shift from current equilibrium to one where formal trucks

cover the bulk of waste generation is out of our scope. Moreover, this scenario is far from

the current context and policy objectives. Instead, policy discussions on public delivery

revolve around formalising Borla Taxis, preserving the current market structure and its

incentives.

For each scenario we present changes in the welfare measure Ω in (20) as percentages

and in thousands of GHS (or 82 USD). The costs of implementing each policy are the

foregone transfer station profits with respect to baseline. We assume the government pays

this amount as a subsidy to keep transfer station profits unchanged.

9.1 Social planner optimum

As a benchmark, we solve the planning problem we characterised in Section 7 and

implement the socially-optimal household disposal shares and collectors area-site routes

using disposal prices p̃dj = ζj + ϱj − ι, as in (21). Figure 16 (Panel A) compares current

equilibrium prices with the site fees that would decentralise the planner’s allocation. In

the planner allocation, dumpsites have higher prices due to their external environmental

costs ϱj. Their low marginal cost ζj, and the environmental costs ι at neighbourhoods

mute this increase (Mc Carthy’s relatively small price increase as a result of its lower cost

exemplifies this). Cheaper sites allow for cheaper waste collection and disposal services,

and irrespective of their external costs, they contribute to removing waste from neigh-

bourhoods through Borla Taxi collection. Transfer stations have considerably lower prices

than what we observe in the data. The planner does not allow for monopoly pricing, and

pushes their prices down, as transfer stations provide disposal services at no environmen-

tal costs and hence are underutilised. Their higher operational costs mute this decrease,

as they offer more expensive services.

The planner disposal fees result in increases of disposal at transfer stations and an
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Figure 16: Planner’s allocation
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Notes: Panel A shows the fees we observe in the data at each disposal site in blue. The fees are in GHS/bag (i.e. average

amount collectors pay for disposal per household customer). Transfer stations –Ashaiaman-Adjie Kojo, IRECOP, and

Pantang, charge higher fees. The dumpsites charge lower and very similar fees, close to 1 GHS/bag. The light blue bars

indicate the fees charged by transfer stations in the data. The stronger blue bars show the fees at each transfer site that

decentralise the social planner’s allocation. In light red we show the fees charged by dumpsites in the data and in a stronger

red the higher fees that are required to decentralise the planner’s allocation. In Panel B we display the welfare gains in 1000

GHS from baseline for each subcomponent of the aggregate welfare Ω that the planner maximises. We report monetary

welfare changes for households, Borla Taxis, transfer stations and dumpsites (given their new prices and resulting flows),

and those arising from environmental cost reductions at neighbourhoods and dumpsites.

overall reduction in the cost of disposal. Adjie-Kojo’s market share increases to 12.3%,

Pantang’s to 8.6% and Korlebu’s to 26.5%. Given its low cost and strategic position, the

Mc Carthy dump maintains a high market share of 29.5%, even in the planner’s allocation.

The allocations resulting from these fees lead to the welfare changes from baseline included

in Panel B of Figure 16. Notably, the reduction in environmental damages at dumpsites

leads to a daily welfare gain of 37000 GHS (or around 3018 USD). Borla Taxis experience

a daily welfare gain of 21000 GHS (or 1631 USD). The per capita gain for Borla Taxis

(considering 2500 Borla Taxis operating in the GAMA) is of 8.4 GHS, which amounts

to 42% of the daily minimum wage in Ghana as of March 2025. This daily gains over

the month accumulate to one extra day of average collector profits in the survey data.

The changes in welfare with respect to the baseline equilibrium are less pronounced for

households, neighbourhood environmental damages, and dumpsites (they see higher prices

and lower demand). The big drop in transfer station fees implies a profit loss of 35000
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GHS (or 2860 USD) daily compared to baseline.

9.2 Transfer station subsidies

As setting prices at dumpsites or attempting to close them is not feasible, we pro-

ceed to evaluate feasible second-best pricing policies at transfer stations. We implement

reductions of final disposal prices at all transfer stations ranging from 10% of the initial

price to 100% (free formal disposal). The higher the spatial frictions collectors face, the

higher the compensating cost reduction must be to reduce waste pollution at dumpsites.

Notably, we allow dumpsites to respond to price changes at transfer stations and update

their strategies endogenously. The new equilibria therefore emerge as a result of both

the direct subsidy effect and the indirect competitive response. In Figure 17 we plot

the total welfare Ω changes from baseline for different levels of transfer stations subsidies

and compare these changes against the total welfare Ω gain that the planner allocation

achieves. As expected, the planner’s maximisation leads to a change in welfare higher

than that of any alternative price reductions at transfer stations. Importantly, Figure

17 highlights that price reductions of 50-60% appear as welfare-maximising second-best

alternatives. Higher price reductions lead to better environmental outcomes and increase

household and collector welfare, but this comes with a significantly higher burden for

transfer station and dumpsite profits. Halving prices at transfer stations is a substantial

price reduction. This is needed to compensate the large disutility from commuting and

spatial frictions collectors face. The effectiveness of this policy also hinges on the current

location of transfer stations. IRECOP, which is in the city centre, is able to steal many

more flows from neighbouring dumpsites than the other two transfer stations. Figure

A30 shows new market share under all counterfactuals we describe in this section. It

is clear that spatial frictions remain a constraint for environmental policy and that the

location of the IRECOP transfer site is very important in explaining the effectiveness of

the policy.

A 50% subsidy achieves a split of formal an uncontrolled disposal very close to that

in the planner allocation (albeit the planner allocates a higher market share to dumps

with lower marginal costs). Panel A in Table 9 includes the percent changes for each

welfare subcomponent and each price reduction. The last row of Panel A indicates per-

cent changes for the planner’s allocation. The planner’s reduction in external costs at

dumpsites ∆Edump (38.56% of baseline monetary pollution costs), can be achieved with a
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Figure 17: Welfare changes from transfer station price reductions
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Notes: The black curve shows the aggregate daily monetary welfare gains from baseline for different

percentages of transfer station price reductions. This includes the profits loss at transfer stations.

As a benchmark, the blue dotted line indicates the daily aggregate welfare gains derived from the

planner’s allocation. All quantities are expressed in 1000 GHS.

price reduction at stations of between 50% (which achieves a 35.12% reduction) and 60%

(a 45.37% reduction). At a 50% price reduction, we estimate welfare increases for house-

holds (1.98% of baseline) and Borla Taxis (5.20% of baseline), resulting from lower disposal

prices, lower collection prices (reduced by around 2%) and subsequent higher collection

rates. Lower downstream prices also induce small reductions of neighbourhood-level pol-

lution costs. For example, halving the price at transfer stations, leads to a 1.15% reduction

in area-level costs from waste being burned or dumped in gutters/drains. Changes up-

stream of the market (collection) are significantly smaller than downstream (disposal),

as the number of collectors is fixed and collectors compete efficiently across and within

areas.35 Finally, dumpsites’ profits go down by around 34% and 44% for a 50% and 60%

disposal fee reduction at transfer stations respectively. While this is necessary to shift

market shares to formal sites where pollution is controlled, these profits go back to Ac-

35Figure A28 illustrates the adjustment of collection and disposal routes under new transfer station

subsidies.
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Table 9: Welfare percentage changes from baseline

A. Price Reductions Only (% Change) B. With New Transfer Station (% Change)

Price Reduction ∆Ωhh ∆ΩBT ∆Earea ∆Edump ∆Ωdump ∆Ωhh ∆ΩBT ∆Earea ∆Edump ∆Ωdump

Baseline Price 0.00 0.00 0.00 0.00 0.00 0.63 1.72 -0.37 -17.93 -27.88

10% 0.12 1.08 -0.07 -4.77 -6.86 0.65 2.73 -0.38 -21.51 -31.70

20% 0.36 2.18 -0.21 -10.48 -14.72 0.78 3.76 -0.45 -25.82 -36.43

30% 0.70 3.26 -0.41 -17.55 -23.44 1.04 4.78 -0.60 -31.10 -42.18

40% 1.23 4.27 -0.72 -25.94 -33.23 1.49 5.75 -0.87 -36.92 -49.00

50% 1.98 5.20 -1.15 -35.12 -43.77 2.11 6.61 -1.22 -44.28 -56.09

60% 2.93 5.95 -1.70 -45.37 -53.97 2.95 7.32 -1.71 -52.38 -63.26

70% 4.13 6.56 -2.38 -55.70 -63.56 4.03 7.87 -2.33 -60.73 -70.14

80% 5.53 7.06 -3.18 -65.30 -72.08 5.35 8.29 -3.08 -68.69 -76.43

90% 7.12 7.52 -4.07 -73.66 -79.29 6.88 8.63 -3.94 -75.84 -81.97

100% 8.83 8.00 -5.02 -80.53 -85.06 8.58 8.94 -4.88 -81.86 -86.59

Planner 0.42 4.38 -0.26 -38.56 -5.73

Notes: All numbers displayed in the table are percent changes from baseline values. In Panel A, we report the results for counterfactual policies that

lower the price of transfer stations by 10-100% of the observed price. The last row of panel A includes percent changes from baseline for the planner’s

allocation. Each column refers to a subcomponent of welfare. ∆Ωhh is the percent change of welfare from baseline for households, ∆ΩBT represents the

same object for Borla Taxis, ∆Earea is the percent change in external environmental costs from waste pollution at neighbourhoods, ∆Edump reflects

the percent change in external pollution costs at dumpsites, and ∆Ωdump the welfare change at dumpsites (profits). In Panel B, we report the results

from counterfactual policies that combine the construction of new infrastructure and price reductions at transfer stations. We report the results for the

construction of the Mallam Junction Transfer Station, which exceed that of the GAEC/Haatso transfer station. In Figure 20, we compare, in thousands

of GHS, key welfare changes for the construction of both stations. The first row of Panel B includes the counterfactual welfare changes when the new

transfer station is constructed and the existing transfer stations get no price reduction. In the remaining rows, we allow for price reductions from 10-100%

at the other transfer stations, as implemented in Panel A. All results in Panel B include the Mallam Junction transfer stations.

cra’s citizens and are therefore part of total welfare Ω. The clearest example of this is the

welfare of waste pickers and recycling intermediaries, who transact in different ways with

dumpsite operators.

We now turn to decomposing welfare benefits and losses in thousands of GHS to

compare against the cost of implementing each policy. Figure 18 (Panel A) shows dif-

ferences from baseline, in thousands of GHS, for each price reduction on the x-axis, and

each welfare subcomponent. Each sub-component of welfare is computed following the

expression in (20). The green line displays the benefits in terms of pollution reduction at

both dumpsites and neighbourhoods for each price reduction at transfer stations. In red

and blue we show, respectively, welfare gains for Borla Taxis and households, accounting

for the total population of both of these collectives. The purple line indicates the loss of

dumpsites profits as subsidies to transfer stations increase. Finally, the yellow line dis-

plays the drop in profits at transfer stations when their price is force to drop via policy. To

make implementing the policy incentive compatible for transfer stations, the government
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needs to make a lump-sum transfer from citizens to the operators of transfer stations so

that the profits of dumpsites are equivalent to their baseline levels. The yellow line there-

fore represents the cost of implementing each pricing regulation. In Panel B we compare

the welfare benefits against implementation costs. The black curve is equivalent to that

in Figure 17. It captures all welfare components, including the loss of profits at transfer

stations –the cost of implementing the policy. It is worth re-emphasizing that, accounting

for all welfare subcomponents, yields positive net benefits for each price reduction, and

these peak at between 50 and 60% transfer station price reductions. Even if we consider

only the benefits from the private subcomponents of welfare, excluding dumpsites (i.e.

welfare of households and Borla Taxis), we estimate positive net benefits from price re-

ductions of between 10 and 70% (This is represented in Figure 18 by the orange curve).

If we restrict benefits to those derived by reducing externalities (i.e. environmental gains

from lowering waste pollution in neighbourhoods and the amount of waste ending up in

dumpsites), we still observe positive benefits net of policy costs for price reductions in the

range of 10-50% (represented by the green curve). If we choose not to account for welfare

losses at dumpsites (pale orange curve), benefits exceed costs at all price reductions, with

a 50,000 GHS daily net gain even at free formal disposal. The results presented in Panel

B suggest that the returns to pricing policies up to 50% are positive even if policy makers

only focused on a subset of welfare components.

In Figure A31, we plot welfare benefits net of costs for the full range of ϱj we found in

the literature, across life-cycle-assessments of different dumpsites or unsanitary landfills.

Our calibration of ϱj = 1.65 is conservative, and higher values (consistent with many as-

sessments in the literature) yield significantly higher net gains. The lower bound of social

costs still lead to positive net gains from 0-32% price reductions at transfer stations.

Overall, our quantification of costs and benefits points towards clear city-wide ben-

efits from price reductions at transfer stations. Our overarching conclusion is that ap-

proximately halving prices at transfer stations yields socially optimal levels of pollution

control, while balancing welfare gains for households and collectors with the losses for the

workforce at uncontrolled dumpsites. Benefits from this policy exceed implementation

costs, making it a worthy goal. However, the cost of implementing optimal second-best

environmental regulation to control waste disposal is large. The amount needed to im-

plement a 50% price reduction amounts to 34548 GHS daily (or 2830 USD). We gather

documentation from the Ministry of Finance on all budgets for Municipal Assemblies in

67



Figure 18: Welfare decomposition and benefit-cost analysis
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GHS) for different welfare components. In black we show the curve in Figure 17, which includes all welfare subcomponents,

including transfer station costs, which are the costs of implementing each price-reduction policy. The pale pink curve

shows benefit-cost excluding dumpsites (i.e. that of households, Borla Taxis, and the environment, minus the cost of

policy implementation). The orange curve only evaluates welfare gains for Borla Taxis and households against policy

implementation costs, the green curve assesses environmental gains against policy implementation costs.

the GAMA, and collect and aggregate them in Table A4. The yearly policy cost of halving

transfer station prices amounts to 55% of the current total waste management budget of

22,598,488 GHS (or 1.85 million USD) allocated by municipal assemblies in GAMA.

While we do not model endogenous responses of the recycling market to policy or

other market changes, in our model, recycling prices at transfer stations and dumpsites

enter in Borla Taxis’ objective function in the same way as disposal fees, and therefore

relative increases in recycling prices would have the same effect as lowering disposal fees.

Additionally, policies that scale up recycling broadly at all types of disposal sites could

reduce environmental costs at dumpsites. Given the very low recycling rates nowadays,

whether recycling policies can achieve the same welfare changes than pricing policies at

transfer stations is an open empirical question that grants further research. These policies

can help lower the high costs we have identified are needed to achieve the optimal level

of environmental quality for the current network of disposal sites in the GAMA.
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9.2.1 Accounting for dumpsites exit

We close this section by analysing whether the pricing policy we have outlined may

alter the network of disposal sites operating in the city. In particular, we assess whether

dumpsites exit the market at different price reductions for different assumptions on their

fixed costs. A dumpsite exits if their profits after best-responding to other sites’ strategies

are weakly smaller than zero. We compute an additional equilibrium after exit, without

the exited site in the network. We repeat this exercise using daily fixed costs for dumpsites

in the 1000-5000 GHS range (82-410 GBP respectively). Dumpsites face low fixed costs,

as they employ a small number of workers and vehicles, and the land they use is claimed

illegally. Figure 19 shows how the market share of illegal dumpsites changes with transfer

station price reductions for different levels of the daily fixed cost. The dotted red line

indicates, as a reference, the market share of dumpsites in the planner’s solution. Allowing

for exit does not reduce significantly the share of illegal disposal for our preferred policy

range. For 50% price subsidies, the difference between a no-exit counterfactual and the

counterfactual with 5000 GHS fixed costs is below 5 percentage points. For larger price

drops, dumpsite exits cascade and matter quantitatively. At 80%, accounting for exit at

the higher fixed cost level leads to a further 10pp reduction in illegal disposal. Figure 19

also highlights that eliminating dumpsites fully would require, in the absence of any other

policy, providing disposal at transfer stations for free.

9.3 Expansion of public infrastructure

In this section we turn to analyse whether the construction of new transfer stations

could complement or even substitute pricing policies. We assess whether the construc-

tion of currently planned infrastructure achieves the same welfare changes as second-best

regulation, and how the market would respond to the combination of price reductions at

existing transfer stations and the deployment of new facilities. We close the section by

comparing the yearly costs of new infrastructure with the yearly costs estimated in the

previous section. Given the importance of spatial frictions we document, this is a promis-

ing policy. However, its effectiveness hinges on the location of new transfer stations, their

prices, and how collectors and dumpsites respond endogenously.

The GAMA government has suggested the construction of disposal facilities, hoping

to guarantee that waste haulage travel distances from major suburbs to nearest transfer

stations don’t exceed 17.9 km. A number of zonal transfer stations have been proposed
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Figure 19: Share of illegal disposal accounting for exit

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

Ill
eg

al
 D

is
po

sa
l S

ha
re

10 20 30 40 50 60 70 80 90 100
Transfer Station Subsidy (%)

No exit 1000 GHS 2000 GHS
3000 GHS 4000 GHS 5000 GHS

Notes: We plot, using a gray dotted curve, the share of illegal solid waste disposal (i.e. at dumpsites) for

different levels of transfer station price reductions. As a straight red dotted line, slightly above 0.5, we plot the

share of illegal disposal in the planner’s allocation for the given set of disposal sites in the GAMA. In different

shades of red, as solid curves, we plot the share of illegal disposal at different levels of transfer station subsidies

and for different assumptions of the daily fixed cost of operating uncontrolled dumpsites. In lighter red, we

plot the share of illegal disposal under a 1000 GHS daily fixed cost assumption. In a stronger red, we plot the
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to 2000 GHS, 3000 GHS, and 4000 GHS fixed costs. As fixed costs increase, dumpsites exit and the share of

illegal disposal goes down, with the effect being more pronounced for higher transfer station price-reductions.

to serve the waste transfer zones defined by the government. Figure A29 shows both

the location of the stations and the boundaries of transfer zones. These are the West-

ern zone (proposed station around Mallam Junction), the Southern Zone (undefined site

placement) and the Northern Zone (proposed site around the Haatso/GAEC area). These

sites were originally intended to complement the existing facilities at the Eastern Zone

(Teshie) and Southern Zone (Achimota), which we identified are not currently in oper-

ation.36 The Ministry of Sanitation and Water Resources (MSWR), through the World

Bank GARID project, has already started the commissioning for the construction of the

proposed transfer station at Haatso. Plans for the construction of the Mallam station

36The GARID report providing these details can be found at https://garid-accra.com/wp-content/uploads/

2024/10/WTS-DED-Report-v7.0_010924.pdf. (accessed: 12/10/2025)
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have also appeared in the news recently (GBC 2024).

We evaluate the impact of the construction of the proposed transfer stations at GAEC

and Mallam Junction separately. In Figure A30, we compare illegal disposal shares under

different counterfactual scenarios (planner allocation, pricing subsidies, new infrastruc-

ture). Panels E and F show illegal market shares under the construction of the two trans-

fer stations at the planned locations and a subsidised rate of 1.5 GHS (current transfer

station prices are between 3 and 5 GHS). Two facts are worth noting. First, the share of

illegal disposal is higher than for the counterfactual second-best pricing scenario. Second,

new transfer stations steal market share from existing ones, muting the overall impact on

increasing the share of formal disposal. The reduction in commuting costs to formal sites

does not change the existing route choice set enough at existing prices, and some route

substitution is at the expense of more expensive formal transfer sites. Hence in Panel B

of Table 9, we combine the construction of new infrastructure with price reductions at

existing sites.

At baseline prices for the existing stations, the construction of the Mallam Junction

transfer station reduces the external environmental costs from disposal at dumps by almost

18%.37 To achieve the same level of environmental quality than the planner or second-

best price reductions, the government would need to implement subsidies in the remainder

transfer stations of close to 40%. Figure 20 allows to compare in 1000 GHS the change in

welfare from baseline for households, collectors, the environment, and dumpsites. It allows

for a direct comparison of pricing only policies (darker curves) with the combination of

new infrastructure and transfer station subsidies (softer curves). For example, the panel

on the right indicates that instead of reducing prices by 50%, the government could drop

them by 35% only and build the Mallam Junction transfer station, reaching an equivalent

welfare increase from environmental quality improvements.

The publicly available engineering report for the commissioned GAEC/Haatso trans-

fer station estimates yearly OPEX of 1,263,300 USD (or 15,855,211 GHS).38 This cost

represents 70% of the total yearly budget for waste management across municipal assem-

blies in GAMA, as opposed to the 55% required to implement second-best uniform price

reductions across transfer stations. Pricing policies alone thus exceed the gains from new

infrastructure and are less costly.

37We focus on this station as it outperforms the station at GAEC/Haatso in terms of pollution control.
38Accessible at https://garid-accra.com/wp-content/uploads/2024/10/WTS-DED-Report-v7.0_010924.pdf
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Figure 20: Welfare decomposition: new infrastructure and subsidies
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10 Conclusion

Limited fiscal resources and enforcement capacity challenge dealing with the negative

externalities that arise from living densely. As a consequence, in a context of rapid

and uncontrolled urbanisation, many cities in the developing countries remain reliant on

private markets for the provision or environmental public goods and services, such as solid

waste collection and disposal. Markets leave large negative externalities unaddressed, as

exemplified by the persistence of illegal dumpsites throughout cities and history. This

paper analyses Accra’s market for solid waste collection and disposal. We use novel

data collection via surveys, observations, images, and a self-developed smartphone app,

to document the equilibrium and key characteristics or an understudied market. We

use experimental variation from demand survey experiments, and structural techniques

combined with our wide range of new data, to estimate a structural model of waste

collection and disposal in the city.

We find that the collection side of the market operates competitively and delivers

large surplus to households, but that disposal at illegal dumpsites leaves large social costs

unaddressed. Price subsidies downstream, at transfer stations, are able to internalise

damages, and achieve 91% of the socially optimal reduction in uncontrolled disposal. The

construction of new public infrastructure achieves smaller gains than policies aimed at

getting prices right, and risks reducing formal disposal unless deployed in a coordinated

manner. The benefits of second-best price subsidies at transfer stations exceed their costs

across a wide range of assumptions for the social cost of dumpsites. At our baseline

calibration, total policy implementation costs amount to 55% of the GAMA’s municipal

budget for waste management.

Our results illustrate that constrained governments can leverage market forces when

direct public provision is difficult, using second-best formal regulation to achieve socially-

optimal levels of environmental quality at a cost within current budgets. But our results

also highlight the limitations of pushing a public goods problem onto private provision. In

Accra, private contracting occurs only over the value of removing waste from households,

not over controlled final disposal. The effects of dumpsites on local communities, the

city’s air quality, and its water bodies, cannot be contracted upon and requires government

involvement. It is promising that limited downstream policies are successful in this setting.

Extreme environmental harms like those arising from uncontrolled trash disposal are not

inevitable. Governments need not put urban growth first and cleanup efforts second.
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A.1 Background

A.1.1 Door-to-door collection

Formal collection trucks. Private contractors are hired by municipal assemblies, op-

erate big trucks for collection, and a small set of communal containers in some neigh-

bourhoods. They transport collected waste to transfer stations or directly to landfills

generally outside of the GAMA. There is a very small number of companies that compete

for these municipal contracts, with one dominating the market. Households need to reg-

ister with these providers (82% of households in our sample relying on formal collectors

are registered) and pay a registration fee that oscillates between 0 and 350 GHS (with an

average of 17.74 GHS for the 100 households in our sample that report a registration fee).

These providers often establish monthly payment arrangements with households (62%

of respondents in our sample use monthly payment arrangements), even if occasionally

resort to payments upon collection (24.4% of households).
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Borla Taxis. There are around 2500 informal door-to-door waste collectors oper-

ating in our study area.39 They travel the city using motorised tricycles, searching for

customers and disposing of the collected waste at transfer stations or open dumpsites.

Most of them (around 95% in our sample) work every weekday, with 37.28% and 44.84%

working 6 and 7 days a week respectively. 57.7% of Borla Taxis in our sample own their

tricycle. The remainder rent it. Borla Taxis don’t have an explicit contractual relation-

ship with their customers. Instead, they bargain with them and charge a price per bag

each time they collect. 98% of households expressed being charged a collection fee every

time they get their waste collected by a Borla Taxi, as opposed to an organised payment

arrangement at certain frequency. Repeated interactions exist but are not the norm.

19.43% or households report always using the services of the same Borla Taxi (21.64 %

report doing so most of the time). 42% state that most of the time they rely on a dif-

ferent Borla Taxi, and 16.9% report no repeated interactions. Similarly, only 21.16% of

Borla Taxis report that all of their customers are regular customers. Otherwise, there is

considerable variation in the percentage of daily customers that are regular or recurrent

customers. The interactions between Borla Taxis and households always take the same

form: Households wait and are present at home. In rare occasions they arrange collection

over the phone (3.79% of households) or let Borla Taxis come in and collect waste when

household members are not present (1.79% of households). Most collection transactions

occur in the early morning. 14% of households in our sample get their waste collected

between 4 and 6am, 70% do so between 6 and 8 am, and almost all respondents (over

97%) have their waste collected before or by 10 am.

A.1.2 Disposal

Borla Taxis transport collected waste to transfer stations or dumpsites for disposal.

At both types of disposal sites collectors need to pay a disposal fee. Recycling is limited,

run by intermediaries, informal pickers, scrap dealers, and processing companies. It takes

place at both types of sites, offering collectors an additional small source of revenue.

39According to the 2021 report “Solid Waste Management Improvement Plan” conducted by the

Greater Accra Resilient And Integrated Development (GARID) Project, coordinated by the World Bank

and the Ministry of Sanitation And Water Resources. This report leverages what is to the best of our

knowledge the only “census” of informal providers of waste management services done in the GAMA.

The report can be found at https://garid-accra.com/wp-content/uploads/2024/05/SWM-Improvement.pdf.
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Transfer stations. They are funded with assistance from the municipal govern-

ments, and operated by a private company. At these sites waste is compacted, occasion-

ally recycled, and then sent to landfills for final disposal or processing. Transfer stations

include leachate containment systems to prevent water pollution, covered storage to avoid

air pollution, and paved surfaces to prevent soil pollution. Often located inside or close to

the city, their objective is to be a clearly designated site for disposal, proximate enough

to reduce the incentive for collectors to dump waste illegally in drains, vacant lots, illegal

dumpsites, or open spaces. Over the years, the government has tried to build and main-

tain a network of transfer stations, but several are now closed, with remaining stations

appealing for more funding to remain in operation (Al-Hassan 2025). We visited three

transfer stations that were aimed to serve the main metropolitan area or had replaced

old landfills. Two were no longer in operation, despite one of them being inaugurated

in 2017. The other had been turned into a small recycling processing facility, no longer

accepting general disposal. As of April 2025, there are three active transfer stations

and one integrated disposal and recycling site that the government uses to control waste

pollution.

Unregulated or illegal dumpsites. They are large pieces of cleared land with no

infrastructure to control pollution. Waste is dumped indiscriminately. Some is separated

by informal waste pickers; the rest is burned (Figure A1 shows an example of burning

at these sites and exemplifies very clearly the difference between illegal sites and trans-

fer stations). The city government has expressed concerns over the substantial risks to

health and the environment posed by illegal dumpsites and has spent large resources in

attempting to close them. It has succeeded at decommissioning several open dumpsites

(in our disposal sites inventory exercise we identified a number of old dumpsites that

are no longer operational) but new sites keep re-emerging and enforcement is faced with

armed resistance (JoyOnline 2025) in some instances. As of April 2025, there are four op-

erational dumpsites. Together they dominate final disposal, with around 70% of the waste

collected by Borla Taxis ending up in illegal dumpsites according to our sites data.
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Figure A1: Agbogbloshie Sikkens Dumpsite & Pantang Transfer Station

Notes: The pictures, taken during our data collection in March-April 2025, show the open dumpsite of Agbog-

bloshie Sikkens (figure on the left), and the Pantang Transfer Station (figure on the right). In the dumpsite,

waste burning is clearly visible
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A.2 Data

Figure A2: Municipal districts in the GAMA

Notes: The map shows the boundaries of districts in the GAMA. The black dots are the centroids of

each district and the red triangles indicate the location of disposal sites in the GAMA.

A.2.1 Household survey

We limited the household demand data collection to the city of Accra due to logistical

reasons and because it is the area where we observe the higher density of built-up area

within the Greater Accra Metropolitan Area. We constructed a housing poverty index at

the EA level based on the 2010 Population and Housing census. We dropped the top 10%

(highest income category) EAs, as these are largely served by formal trucks, comprise a

relatively small share of the total population, and the original focus of the project was

on understanding how informal markets expanded access to waste management services.

The remaining EAs form our population of interest. We created three income strata to

construct our sample, each representing 30% of the population. The distribution of the
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index and the spatial distribution of the index are in Figure A3. We randomly selected

50 EAs within each stratum, and randomly surveyed 12 households within each EA via

door-to-door interviews, to form a sample of 1800 households.

Figure A3: Housing poverty index

(a) Distribution
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(b) Spatial variation

Notes: (a) Histogram of housing poverty index. The vertical lines represent the 10th, 40th, and 70th percentiles of the

housing poverty index at the EA level using 2010 Census data. (b) The map represents the spatial variation of the housing

poverty index. Officially designated slums are highlighted in black. Their location coincides with pockets of high housing

poverty as measured by the index.

Figure A4: Waste pollution: Average trash count (1.09)

Notes: Subset of images from an EA where the average trash count is low (1.09). In this particular case, trash

objects are only visible in the third and fourth images starting from the top left. All pictures are taken from a similar

angle. The gutter is clearly visible.
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Figure A5: Waste pollution: Average trash count (6.8)

Notes: Subset of images from an EA where the average trash count is high (6.8). In this particular case, trash

objects are visible in all images. All pictures are taken from a similar angle. The gutter is clearly visible and full of

turbid and stagnant water in most images. This figure illustrates the challenge in using deep-learning techniques to

obtain an accurate number of trash objects.

Figure A6: Average trash count in gutters

Notes: The map presents the average trash count for all 150 EAs in the household survey. Blue

EAs have average counts of 0-2 trash objects. Green EAs have counts of 2-4. In yellow EAs we find

an average of 4-6 trash objects across waste images. Orange EAs have between 6 and 8 trash objects

on average. Red EAs have over 8 objects per image. The map shows substantial heterogeneity in

waste pollution across EAs in our survey.
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A.2.2 Borla Taxi survey and smartphone transaction data

Figure A7: Registration of smartphone app users
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Notes: Survey participants were registered on the app at the time of the in-person

interview or at a later date, in those cases were respondents owned a smartphone but

had not brought brought it to the site at the time of the survey. In those instances,

enumerators arranged the registration in the app with collectors at a later date. We

show the time series for the first two weeks of April, when all registrations were com-

pleted.
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Figure A8: Transaction registration in the smartphone app

Notes: The smartphone screens show the main steps required to register a

transaction. In screen one, we display the number of transactions already

submitted. The button “+ Add Transaction” leads to the second screen,

where the user can write the price in GHS in a text box. The user can

also indicate whether any of the waste they received was already separated

for recycling, and optionally, upload a picture of the collected waste. The

icons at the bottom of the main screen (screen one) allow users to access

the system to redeem rewards for registering data, a list or history of their

transactions, and an optional daily report where they can indicate whether

they were able to register all of their transactions.
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Table A1: Disposal sites inventory

Site Description

Sampling sites

1. Agbogbloshie Sikkens Unregulated dumpsite with active flow of collectors.

2. Mc Carthy Unregulated dumpsite with active flow of collectors.

3. Mallam/Tetegu Unregulated dumpsite with active flow of collectors.

4. Glefe Unregulated dumpsite with active flow of collectors.

5. Pantang Transfer station with active flow of collectors.

5. Ashaiaman/Adjie-Kojo Transfer station with active flow of collectors.

6. Korlebu (IRECOP) Recycling site/transfer station with active flow.

7. Kokomleme Mini-Transfer Station Small station with active and low flow of collectors.

Not included in the sample

1. Kotoku/Amasaman/Pokuase Site It is further away and has low Borla Taxi collector traffic (it’s

mostly used by big formal trucks).

2. Zoompak Teshie Transfer Station It was not in operation in March–April 2025. According to

the manager, it will re-open in June–July 2025.

3. ZoomPak Achimota Transfer Station It had been closed for the past two years.

4. Mallam Old Landfill “Tidyup” Station Used to be a landfill, then a transfer station, and now has

been converted into a solely recycling centre, diverting col-

lector traffic to McCarthy dumpsite.

5. Korle Lagoon (KLERP) Dump Informal location, no longer in operation.

6. Tunga Dump Very low collector traffic. Mostly used by households directly

or pushcart/wheelbarrow collectors.

7. Old Pantang (Abokobi) Dumpsite Decommissioned.

8. Oblogo/Weija Dumpsite Decommissioned.

9. Mallam Market Dump Decommissioned.

10. Madina Open Dump Decommissioned.

11. Bawaleshie “Mpraeso” Dumpsite Decommissioned.

12. Okponglo Dump It is used only by households and some scrap dealers.

13. Kpone and Kpone II Landfills We did not include them in our sampling list as these are far

from the main metropolitan area and used mostly by formal

trucks or collectors operating solely east of the Tema area.

14. Adipa Waste Management Centre This is a newly engineered landfill. It is outside the Greater

Accra Metropolitan Area and, like Kpone, is mostly used

by formal trucks or a small number of collectors from the

vicinity.

Notes: The table provides details on our disposal sites inventory; for both the sites included in the sample and those we

discarded. The descriptions are based on field visits conducted during March 2025.
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Figure A9: Transactions and number of customers in survey

(a) Normal usage
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(b) Abnormal/low-usage
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Notes: Panel A shows, in blue the scatter plot of daily registered transactions against the number of customers

reported in the survey. Each dot is a collector-day level, where we have aggregated all transactions each collector

registers in a day. Variation within the same number of customers in survey (x-axis) therefore contains both

cross-sectional variation across collectors and time variation in registered transactions for different dates. The

dotted black line corresponds to the 45-degree line. In solid blue we include the line of best fit through the raw

data. Panel B represents the same relationship for the collectors we classify as having abnormal/low-usage.

The observations and line of best fit are now in red. Collectors in Panel B either report too many transactions

–the small cloud above 50 registered transactions on the upper left of the plot–, or report too little transactions,

creating a flat relationship between transactions and number of customers –at the bottom of the plot.
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Figure A10: Number of customers for both types of users

(a) Distribution of customers
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(b) Daily classification
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Notes: In Panel A, we include the histogram of number of customers as measured in the survey data. Our observations are

at the collector-day level, where each collector-day is classified as Normal User or Low/Abnormal User. The distribution

for those that show normal usage is in blue, and for those classified as low/abnormally-high usage in red. We include

as a vertical dotted line in blue (25.3) and red (27.8) the average number of customers for both groups. In Panel B, we

present four time series: (1) average number of transactions for those with normal usage (solid blue line), (2) average

number of customers in survey for those with normal usage (dotted blue line), (3) average number of transactions for those

with low/abnormal usage (solid red line), (4) average number of customers in survey for those with low/abnormal usage

(dotted red line). We compute the averages for each given day. Because the classification is at the collector-day level,

there is variation in the sample of collectors that falls within each classification in each date. Hence, the variation in the

survey-based values.
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A.3 Descriptive facts

Figure A11: Formal truck collection availability

Notes: We represent data from our household survey at the EA level on the share of respondents that

report that formal trucks operate in their neighbourhood. This information is represented with the blue

gradient (from 0 in white to 100 in dark blue). We also include in blue part of Accra’s road network.

We represent the highways/motorways (trunk), the major arterial roads (primary), and regional district-

level medium-capacity roads (secondary). These are meant to capture the main arterials that would be

suitable for heavy collection trucks. We include the full road network in light grey. In red we depict the

areas that the city formally classified as slums.
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Figure A12: Collection availability by income

0

.2

.4

.6

.8

1

S
ha

re
 o

f h
ou

se
ho

ld
s

les
s t

ha
n 1

00
0

10
01

–2
00

0

20
01

–3
00

0

30
01

–4
00

0

40
01

–5
00

0

50
01

–6
00

0

60
01

–8
00

0

80
00

+

Pre
fer

 no
t to

 sa
y

Combined income of the household (average month)

Truck collection access Borla Taxis access

Notes: The figure represents the share of households within each income bracket that report access

to truck collection (blue) and Borla taxi collection (red). The data is from our household survey.

Income is self-reported, combined at the household level, for a representative month, and in GHS.

We report raw shares of households reporting access to each option in their neighbourhood by

income categories as squares and 95% confidence intervals in the same colour.
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Figure A13: Waste collection access and usage
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Notes: We show raw counts of households belonging to each access and choice group. The data

comes from our household survey. In gray we show the number of households that report access to

each category: formal only, formal and Borla Taxi, Borla Taxi only, or no door-to-door collection

access. The blue bars indicate the number of households that report using formal. We report this

both within those that report access to formal only and within those that report access to both

formal and Borla Taxi collection services. The red bars, analogously, represent those households

that report using Borla Taxi services within the two categories corresponding to Borla Taxi access.

125 households in the sample report no access to door-to-door collection services whatsoever.
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Figure A14: Household collection/disposal choices (main)

(a) 2021 Census (Locality)
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Notes: Panel B shows survey responses to the question on main waste disposal option. There is a total of 1813

households participating in the survey. We calculate shares at the locality level. The figure plots the shares for each

disposal option stacked, at the locality level. Localities have been sorted based on the share of Tricycle/Borla Taxi col-

lection share. In dark blue, we present tricycle collection shares, in light blue, formal truck collection shares, in yellow,

the share of households using containers as their main option, and in red the share using burning/dumping/burying

trash. In Panel A we represent the same variable –we used the same question on main disposal choice in our survey

–but using locality-level 2021 census data we obtained from the Ghana Statistical Service.
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Table A2: Collection and accounting

(1) (2) (3) (4) (5) (6)

Unofficial Formal ∆ Ha: ∆ < 0 Ha: ∆ ̸= 0 Ha: ∆ > 0

Collection

Price charged for small bag (main locality) 5.31 5.12 0.19 0.791 0.418 0.209

(N= 283) (N= 95)

Price charged for big bag (main locality) 13.51 12.48 1.03 0.928 0.145 0.072

(N= 283) (N= 95)

Price charged for small dustbin (main locality) 17.57 17.58 -0.01 0.495 0.990 0.505

(N= 282) (N= 96)

Price charged for big dustbin (main locality) 37.19 35.88 1.32 0.808 0.384 0.192

(N= 284) (N= 97)

Number of household customers in main locality 23.83 22.22 1.61 0.876 0.249 0.124

(N= 287) (N= 97)

Daily waste collection revenue 343.30 357.32 -14.02 0.218 0.437 0.782

(N= 286) (N= 97)

Average daily collection revenue (app) 365.15 355.83 9.32 0.587 0.826 0.413

(N= 69) (N= 23)

Costs & Profits

Daily total costs from being a waste collector 132.79 177.37 -44.58*** 0.000 0.000 1.000

(N= 286) (N= 97)

Fuel costs in a typical week 364.90 267.22 97.68*** 1.000 0.000 0.000

(N= 287) (N= 97)

Daily profits (inputed) 234.43 228.80 5.63 0.627 0.745 0.373

(N= 286) (N= 97)

Notes: The table reports mean outcomes for waste collectors at Unofficial (col. (1)) and Formal (col. (2)) disposal sites. ∆ (col. (3)) is the

difference in means for collectors disposing at unofficial and formal sites. Sample sizes (N) for each group appear in parentheses below the means.

Stars on ∆ denote significance from two-sided Welch t-tests: *** p < 0.01, ** p < 0.05, * p < 0.10. Columns (4)–(6) give one-sided p-values for the

hypotheses Ha : ∆ < 0, Ha : ∆ ̸= 0, and Ha : ∆ > 0, respectively. Formal sites are the Ashaiman-Adjie Kojo transfer station, the Pantang transfer

station, the Korlebu Recycling Plant (IRECOP), the Kotoku Trash Site/Amasaman, and the Kokomlemle Mini Transfer Station. Unofficial or

illegal sites are the Mallam/Tetegu dumpsite, the Glefe dumpsite, the Agbogbloshie Sikkens dumpsite, and the McCarthy dumpsite. All variables

in the table are winsorised (1st and 99th percentiles).
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Figure A15: Main collection locality share (dumpsites)

(a) Mc Carthy (b) Agbogbloshie Sikkens

(c) Mallam-Tetegu (d) Glefe

Notes: The maps use survey data from 400 collectors. Each locality in the GAMA gets a value that corresponds to the

share of collectors that dispose in the corresponding site, who identify that locality as their main collection area. Areas

with darker shades of orange correspond to areas where more collectors operate in, of the ones that dispose of the waste

they collect in the particular disposal site. The location of the site is indicated using a small red triangle. In panel A we

represent the collection locality shares for Mc Carhty, in B for Agbogbloshie, in C for Mallam-Tetegu and in D for Glefe.

The maps show the catchment areas for each. Localities in white are those in which collectors disposing at the site do not

collect waste in.
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Figure A16: Main collection locality share (formal sites)

(a) Adjie-Kojo transfer station (b) Pantang transfer station

(c) Korlebu recycling and disposal site

Notes: The maps use survey data from 400 collectors. Each locality in the GAMA gets a value that corresponds to the

share of collectors that dispose in the corresponding site, who identify that locality as their main collection area. Areas

with darker shades of blue correspond to areas where more collectors operate in, of the ones that dispose of the waste they

collect in the particular transfer station. The location of the site is indicated using a small blue triangle. In panel A we

represent the collection locality shares fort the Adjie Kojo transfer station, in B for Pantang, and in C for Korlebu. The

maps show the catchment areas for each, which are highly concentrated. Localities in white are those in which collectors

disposing at the site do not collect waste in.
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Figure A17: Distribution of collection-disposal route distances
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Notes: Distribution of route distances across all possible combinations of home-collection-area-disposal

are included in red. Distribution of routes that collectors choose in the data are in blue.
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Figure A18: Detail on the location of dumpsites)

(a) Dumpsites location

(b) Mc Carthy (Google Maps)

Notes: (a) Detail of Open Street Map with the location of the Agbogbloshie Sikkens, Mc Carthy,

Glefe, and Mallam-Tetegu dumpsite. Water bodies are in blue. The red boundaries correspond

to the officially- designated slum areas. Dumpsites are shown as red dots. The Korlebu transfer

station appears as a blue dot. (b) Satellite image from Google Maps of the area covered by one of

the main dumpsites in Accra. Waste burning from the site appears to be visible in the image.
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A.3.1 Randomised response exercise

The randomised response method (Warner 1965) seeks to reduce potential biases due

to non-response or social desirability, and elicit honest answers to questions on beliefs or

sensitive behaviours (e.g. e.g. drug use, illegal dumping, tax evasion), while preserving

respondent’s privacy. The key idea behind this technique is to introduce random noise into

the individual responses such that the interviewer cannot determine with certainty the

respondent’s true answer, but aggregate statistics (e.g. aggregate share of waste dumping)

can be estimated accurately.

We asked four survey questions: one placebo to test comprehension (“Do you have

blue hair?”), one non-sensitive question (“Do you sometimes eat dessert after dinner?”),

and two potentially sensitive questions (“Do you sometimes burn waste?” and “Do you

sometimes dump waste in gutters/drains”). Answering “Yes” to waste burning and dump-

ing may be incriminating or embarrassing. Instead, we introduced random noise by asking

respondents to flip a coin. If heads, they had to answer “Yes” regardless of the truth. If

it landed tails they had to answer truthfully. With probability 50%, the respondent gives

a true answer, limiting our ability to infer if a “Yes” to the sensitive questions is truly an

indication of the behaviour or due to the 50% chance of the coin landing heads.

This method can reduce social desirability bias by giving respondents “the benefit of

the doubt”. A “No” fully reflects a truthful “No”, as only tails gives a chance to answer

something other than “Yes”. Nonetheless, ex-ante we expect at least 50% of affirmative

responses to the sensitive questions. Thus, respondents may be more willing to report

affirmatively about sensitive behaviours if they engage in them. We ask the four questions

using four independent coin flips.

We include the raw shares responding “Yes” to each question in Figure A19. Re-

spondents appear to have understood the exercise. The placebo “blue hair” should be

close to 50% by chance. And likely there are no truly positive cases. The share of re-

spondents answering “Yes” to this question is slightly over 50 %. The share that respond

“Yes” to a non-sensitive behaviour like “having dessert after dinner” is well above 50%,

with around an estimated 30% engaging in this behaviour. More strikingly the share of

households answering “Yes” to dumping waste in gutters is below 50%. This indicates

that even when households had to answer “Yes” due to the coin flip result, they refused

doing so. This points to some social stigma, and social desirability bias, perhaps due
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to fear of judgement. The suggestive results from this exercise point towards the need

for model-based approaches to estimate sensitive behaviours and complement potentially

biased aggregate statistics based on survey data.

Figure A19: Randomised response results
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Notes: Each bar represents the share of households

that responded “Yes” to the following questions: “Do

you have blue hair?”, “Do you sometimes eat dessert

after dinner?”, and two potentially sensitive questions

“Do you sometimes burn waste?” and “Do you some-

times dump waste in gutters/drains”. We plot 90 and

95% confidence intervals.
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A.4 Survey experiments

Figure A20: Scales used to measure bags’ weight

Notes: The picture illustrates the procedure followed

to weight all waste bags of households participating in

the survey. Enumerators used sanitary gear, and all

carried individual scales to measure waste bags in the

BDM and TIOLI demand elicitation exercises. The bags

were measured at the start of each survey experiment.
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Figure A21: Examples of waste bags that enumerators could not weigh

(a) Example 1 (b) Example 2 (c) Example 3

Notes: We include illustrative examples of cases where enumerators were unable to obtain weight measurements using the

scales. Most commonly the issue arises not from differences in quantity accumulated, but from the arrangement of waste

in sacks, directly in bins with no bag, or in a small pile.

Figure A22: Distribution of bags’ weight

0

.05

.1

.15

.2

.25

D
en

si
ty

0 2 4 6 8 10 12 14 16 18 20
Weight of waste bag (Kg)

Panel A: BDM participants

0

.05

.1

.15

.2

.25

D
en

si
ty

0 2 4 6 8 10 12 14 16 18 20
Weight of waste bag (Kg)

Panel B: TIOLI participants

Notes: Histograms of weight of waste bags, measured using identical scales for survey participants. The data

used for the distributions is for all income groups. In Panel A, we include the histogram of bag’s weight for BDM

survey participants, after removing extreme values (observations greater than 20 kg, which are likely an error

in the scale used for measurement) (662 observations). In Panel B, we include the histogram of bag’s weight

for TIOLI survey participants, after removing extreme values using the same criterion (415 observations).

As expected, the randomisation of participation across demand elicitation mechanisms yields very similar

distribution of waste bag’s weights.
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Figure A23: BDM bids against waste bag weight
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Notes: The scatter plot in red is constructed using raw bids and weight data for the households participating

in the BDM elicitation exercise. The linear fit and 95% confidence intervals for it are represented in the red

line and shaded area. Using bigger dots in blue, we represent a binned scatter plot for the same data.
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Figure A24: Heterogeneity in BDM and TIOLI demand estimates
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Notes: We represent BDM and TIOLI estimates for three monthly household income groups: 1) below 1000

GHS in red, 2) Between 1000 and 2000 GHS in blue, and 3) Over 2000 GHS in gold. BDM demand curves,

with 95% confidence areas and standard errors clustered at the survey enumeration area level, run for each

group separately. TIOLI demand at three price points (GHS/kg) –0,5, 2, and 3.5, with 95% confidence intervals

and EA-level clustering of standard errors. Run for each group/sample separately. The BDM demand curve

reflects the share of households that bid higher or equal than the indicated price in GHS/kg. The TIOLI point

estimates reflect the share of households that accepted the price (i.e. purchased the collection service) at each of

the random price points. We use point-wise inference from logit regressions for each sample at prices/kg going

from 0.5 to 7.5 with 0.5 increments. There are a total of 685 clean BDM final bids, and 394 TIOLI accept/reject

observations (115 at 0.5 GHS/kg, 124 at 2 GHS/kg, and 155 at 3.5 GHS/kg). In the whole household survey

sample, 409 households report incomes lower than 1000 GHS, 484 report earnings between 1001 and 2000 GHS,

244 report earnings in the 2001-3000 bracket, 104 do so in the 3001-4000 bracket, and a combined total of 149

report earnings in the remaining higher-income brackets. 423 preferred not to reveal their income.
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Figure A25: Daily waste generation per capita
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A: Number of respondents by frequency
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B: Waste bag's weight by frequency

Notes: We use a total of 1105 weight measurements for survey participants in both the BDM and

TIOLI elicitation exercises. For 706 households across both exercises, the available waste was too

heavy or arranged in a way that it was difficult to weigh (e.g. already in a bin or sack that made the

measurement challenging). Enumerators took pictures in all of these cases. We include illustrative

examples in Figure A21. In panel A we plot the number of respondents, for which we have weight

measurements that fall within each collection frequency category. The majority express getting

their waste collected once a week (45.55%) or every 2-3 days (37.27%). Followed by those that get

their waste collected every day (8.17%). In Panel B we represent the average weight of bags per

capita in kg by each collection frequency category. We calculate kg per capita values by dividing

waste measurements over the household size, as reported in our survey. Those that get their waste

collected every day have lower kg per capita. Respondents in the the rest of relevant categories

(every week and every 2-3 days) report very similar waste per capita at the time of the interview.
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Figure A26: BDM, TIOLI, and stated preference estimates
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Notes: BDM demand curve, with a 95% confidence band and standard errors clustered at the survey enumer-

ation area level. TIOLI demand at three price points (GHS/kg) –0,5, 2, and 3.5, with 95% confidence intervals

and EA-level clustering of standard errors. The BDM demand curve reflects the share of households that bid

higher or equal than the indicated price in GHS/kg. The TIOLI point estimates reflect the share of households

that accepted the price (i.e. purchased the collection service) at each of the random price points. We use

point-wise inference from logit regressions at prices/kg going from 0.5 to 7.5 with 0.5 increments. There are

a total of 685 clean BDM final bids, and 394 TIOLI accept/reject observations (115 at 0.5 GHS/kg, 124 at 2

GHS/kg, and 155 at 3.5 GHS/kg). The orange line represents the demand curve we obtain using our stated

preference estimates and attribute values. The shaded area corresponds to 95% confidence intervals. In the

vertical dotted line we indicate the equilibrium weekly price of 17 that we measure in the household survey.
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Figure A27: Predictions and trash counts
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Notes: The figure uses the EA level data on both predicted market shares

and waste pollution, measured as average number of trash objects across

all households and pictures in an EA. We construct bins based on the

trash count (0-1), (1-2), (2-3), (3-4), (4-5), (5-6), and 6+. For each bin we

compute the mean burn/dump choice probability across EAs (the blue bars

in the figure), and 95 and 90% confidence intervals (indicated in lighter

blue in the figure).
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A.5 The environmental costs of open dumpsites

This section reviews literature on the environmental and health costs of municipal

open dumpsites, with the goal of informing the model calibration of their external costs per

tonne of waste (ϱj). Uncontrolled solid waste disposal at open dumpsites generates large

environmental and health consequences through GHG emissions, air pollution, groundwa-

ter and soil contamination, and the spread of infectious diseases. The available evidence

is mixed and offers a wide range of external costs depending on context and assumptions.

We first review evidence on the main sources of social damages. We follow this with an as-

sessment of the environmental cost of open dumpsites from different life-cycle-assessments

in a variety of contexts. This is detailed in Table A3. We select a conservative ϱj = 1.65

GHS/bag, as the aggregate cost of waste disposed of at uncontrolled dumpsites.

Emissions of Greenhouse Gases: At disposal sites, bacteria decompose the

degradable organic carbon contained in solid waste under anaerobic conditions into methane

(CH4) and additional compounds. Open dumps don’t have the infrastructure required for

gas capture, and as a result emit methane at high rates (100-200 m3CH4/t of municipal

solid waste, according to the emissions model in EPA 2005), being an important contrib-

utor to global anthropogenic methane emissions. Estimates for the social cost of methane

range from 880–8100 USD/tCH4 in 2020, with a base case estimate of 4000 USD/tCH4,

in Azar et al. 2023, 933 USD/tCH4 in Errickson et al. 2021, 470-2900 USD/tCH4 in 2020

in EPA 2023, or between 2400/tCH4 and 3600/tCH4, in Shindell et al. 2017, depending

on the discount rates used. Accounting for these emissions alone implies external costs

that range between 34 USD/t MSW to 1,163 USD/t MSW, depending on the assumed

methane generation rate and social cost of methane. This is substantially higher than the

cost implied by controlled engineered landfills with gas capture.

Air pollution: Open burning of waste at dumpsites and in neighbourhoods is

widespread in developing countries and a major source of air pollution. Globally, open do-

mestic waste burning emits approximately 631 Gg of black carbon per year, with PM10

emissions from open waste burning in China equivalent to 22% of the country’s total

anthropogenic PM10 emissions (Wiedinmyer et al. 2014). Studies have documented sub-

stantial emissions of CO, NOx, SO2, CO2, NH3, HCl, CH4, PM2.5, PM10, BC, and

NMVOC from burning in municipal dumpsites in India (Sharma et al. 2019). Labo-

ratory experiments demonstrate that incomplete combustion releases criteria pollutants

(CO, NO2, SO2, PM2.5, PM10) and toxic compounds including heavy metals, dioxins,
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furans, and polycyclic aromatic hydrocarbons (Wang et al. 2023). Field measurements in

Brazilian neighbourhoods found PM2.5 concentration spikes reaching 565 µg/m3 during

burning events (Krecl et al. 2021).

Groundwater and soil contamination: Leachate from open dumpsites percolates

through the soil, polluting groundwater with heavy metals, organic matter, and dissolved

contaminants. Biswas et al. 2010 find cadmium, nickel, lead, chromium, and manganese

concentrations in groundwater exceeding safe drinking water limits due to leachate mi-

gration from the Mathkal dumpsite in Kolkata, India. Prechthai et al. 2008 identify

that at the Nonthaburi dumpsite in Thailand, heavy metal concentrations in groundwa-

ter were consistently 10 times above WHO limits for drinking water, with manganese,

zinc, and cadmium found in easily leachable forms. At the Olusosun dumpsite in Lagos,

Nigeria, 85% of groundwater samples had pH values below WHO ranges, with 35% un-

suitable for consumption and heavy metals exceeding standards more frequently during

wet seasons (Aboyeji and Eigbokhan 2016; Ferreira et al. 2023). In Tiruchirappalli, India,

leachate from an open dumpsite showed chemical oxygen demand ranging from 29,880-

45,120 mg/L, heavy metal concentrations in soil ranging from 3.78-0.59 mg/kg at depths

of 2.5-5.5 m, with higher concentrations in topsoil, consistent with the influence of uncon-

trolled solid waste dumping (Kanmani and Gandhimathi 2013). Rajoo et al. 2020 also

find that open dumpsites lacking containment infrastructure cause severe groundwater

contamination in developing countries.

Overview on health consequences: Systematic reviews suggest that properly

managed engineered landfilling does not increase the risk of negative health effects (Mat-

tiello et al. 2013). Conversely, epidemiological studies and systematic reviews document

substantial health impacts from open dumpsites and hazardous sites (Siddiqua et al. 2022;

Vrijheid 2000). Proximity to uncontrolled waste sites is associated with adverse health

outcomes including asthma, tuberculosis, diabetes, depression (Tomita et al. 2020) and

lung cancer mortality from hydrogen sulfide exposure (Mataloni et al. 2016), with respira-

tory infections being particularly acute for children (0-14) (Carpenter et al. 2008; Corrêa

et al. 2011). Living within 2 km of unsanitary landfills has also been associated with ele-

vated risks of congenital anomalies, such as neural tube defects, abdominal wall defects,

surgical correction of gastroschisis and exomphalos, and increased risks of low and very

low birth weight (Elliott et al. 2001). Systematic reviews have identified limited evidence

for associations with liver, bladder, breast cancers, and non-Hodgkin lymphoma (Fazzo
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et al. 2023). Beyond the consequences for urban dwellers near open dumpsites, waste

pickers working at these sites face severe occupational health risks including high injury

rates, respiratory diseases, infectious diseases, and musculoskeletal disorders (Mol et al.

2017; Cruvinel et al. 2019; Uhunamure et al. 2021).

Table A3 includes a collection of the available estimates for the environmental/health

costs of dumpsites, which incorporate some of the described damages. Figure A31 shows

the sensitivity of our net benefit results to variations in the value of ϱj, following the

estimates in Table A3.

Table A3: Environmental Costs of Dumpsites and Unsanitary Landfills

Location Cost per Bag Emissions Reference

(GHS) (kg CO2e/tonne)

Dumpsite [Sri Lanka] 0.26 – Menikpura et al. 2012

Unsanitary landfill [Kinshasa] 0.50 225 Kang et al. 2023

Unsanitary landfill [Sri Lanka] 0.56 251 Peiris and Dayarathne 2022

Unsanitary landfill [Indonesia] 0.59 267 Kristanto and Koven 2019

Open dump [Indonesia] 0.75 – Rahim et al. 2013

Open dump (LCA, net) 1.25–1.75 561–786 Manfredi et al. 2009

Burning at dump 1.71 769 Astrup et al. 2009

Open dump (LCA, gross) 2.22 1,000 Manfredi et al. 2009

Open dump [Mozambique] 3.49 1,570 dos Muchangos et al. 2025

Unsanitary landfill [Bangkok] 3.86 – Inazumi et al. 2011

Open dump [South Africa] 4.90 2,205 Friedrich and Trois 2013

Unsanitary landfill [South Africa] 5.62 2,532 Friedrich and Trois 2013

Notes: Conversion assumes 3.7 kg per bag as measured in our household survey and 12 GHS = 1 USD. All costs calculated

at conservative social cost of carbon of $50/tCO2e (World Bank 2017). LCA net includes carbon storage credit; gross

excludes it.
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A.6 Counterfactuals

Figure A28: Counterfactual collector flows

Notes: Panels A, B, and C display collector home-collection area flows for the baseline scenario, 50% and free formal

disposal respectively. Flows are represented in black. Panels D, E, and F display collection area-disposal site flows for the

three same scenarios. In red, flows to dumpsites. In blue, flows to transfer stations.
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Table A4: Solid Waste Management Budget 2024/25 for GAMA

Municipality
Total Waste

Management
SWM

Environmental

Sanitation

Total

Budget

Ablekuma Central Municipala 3,028,862 1,684,062 454,800 13,699,028

Ablekuma North Municipalb 935,377 545,000 365,377 14,936,271

Ablekuma West Municipalc 245,179 176,579 43,400 14,339,255

Ayawaso Central Municipald 415,000 – – 18,000,247

Ayawaso Easte 650,000 350,000 250,000 8,578,374

Ayawaso North Municipalf 1,127,685 630,000 436,685 19,622,073

Ayawaso West Municipalg 913,928 366,658 509,356 37,966,705

Korle Klotteyh 3,512,374 1,842,374 1,220,000 24,091,280

Krowor Municipali 976,750 571,750 325,000 16,097,147

La Dadekotopon Municipalj 2,416,000 1,226,000 1,190,000 18,103,969

Ledzokukuk 455,000 200,000 255,000 18,152,512

Okaikoi Northl 1,440,000 1,365,000 75,000 18,698,341

Accra Metropolitan Area (AMA)m 6,482,333 4,096,000 896,000 33,724,875

TOTAL 22,598,488 13,053,423 6,020,618 256,010,077

Notes: For Ayawaso Central Municipal, waste management does not appear as disaggregated item. As an estimate, we use

the expenditure value assigned to public health services. We include the links to all municipal budget documents below. The

total waste management budget includes liquid waste management, solid waste management, and environmental sanitation

activities related to waste management. The fourth column, Total Budget, includes the aggregate number allocated for all

operations.
a https://mofep.gov.gh/sites/default/files/composite-budget/2025/GR/Ablekuman.pdf
b https://mofep.gov.gh/sites/default/files/composite-budget/2024/GR/Ablekuma_North_.pdf
c https://mofep.gov.gh/sites/default/files/composite-budget/2024/GR/Ablekuma_West.pdf
d https://mofep.gov.gh/sites/default/files/composite-budget/2025/GR/Ayawaso.pdf
e https://mofep.gov.gh/sites/default/files/composite-budget/2024/GR/Ayawaso_East.pdf
f https://mofep.gov.gh/sites/default/files/composite-budget/2024/GR/Ayawaso_North.pdf
g https://mofep.gov.gh/sites/default/files/composite-budget/2025/GR/Ayawaso_West.pdf
h https://mofep.gov.gh/sites/default/files/composite-budget/2024/GR/Korle_Klottey.pdf
i https://mofep.gov.gh/sites/default/files/composite-budget/2024/GR/Krowor.pdf
j https://mofep.gov.gh/sites/default/files/composite-budget/2024/GR/La_Dade_kotopon.pdf
k https://mofep.gov.gh/sites/default/files/composite-budget/2025/GR/Ledzokuku.pdf
l https://mofep.gov.gh/sites/default/files/composite-budget/2024/GR/Okaikwei_North.pdf
m https://mofep.gov.gh/sites/default/files/composite-budget/2024/GR/Accra.pdf
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Figure A29: Candidate disposal sites and transfer zones

Notes: The map shows the waste transfer zones and candidate disposal sites, proposed by the

government, as illustrated in the GARID report https://garid-accra.com/wp-content/uploads/

2024/10/WTS-DED-Report-v7.0_010924.pdf. The report mentions as source of information the The

Ministry of Sanitation and Water Resources (MSWR).
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Figure A30: Counterfactual disposal market shares
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Panel B: Planner
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Panel C: 50% Subsidy
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Panel D: Free formal disposal
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Panel E: GAEC station
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Panel F: Mallam station
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Panel G: GAEC + 50% subsidies
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Panel H: Mallam + 50% subsidies

Notes: Disposal sites are indicated in the x-axis. Dumpsites in red, transfer stations in blue. Panel

A is the baseline model, Panel B the planner allocation, Panel C a 50% to all transfer stations,

Panel D free formal disposal, Panels E and F capture the impact of building two new stations with

a disposal unit fee of 1.5 GHS, and Panels G and H add on top 50% subsidies to remaining stations.
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Figure A31: Sensitivity analysis of net policy benefits
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LCA open dumps review: 2.22 GHS/bag

Upper bound: 5.62 GHS/bag

Lower bound: 0.26 GHS/bag

Core uncertainty: 1.65-2.22

Medium range: 0.75-3.86

Full range: 0.26-5.62

Notes: Social benefits net of costs for different assumptions on the external costs of dumpsites in GHS/bag.

Each band is constructed using different assumptions for the environmental cost of dumpsites based on existing

assessments in the literature. The red line curve and gray curve denote net social benefits for the upper bound

and lower bound of damages respectively. The darker blue region corresponds to the most common figures we

found in our analysis of the literature. Our baseline calibration of damages yields the solid blue line. The area

shaded in lighter blue represents the full range of external costs damages, based on our assessment in Table A3.
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A.7 Theoretical Appendix

A.7.1 Expected utility of households and Borla Taxis

This section details the derivation of the expected utility (3) of a household living in

area a. To simplify notation, we expresse utility (1) as Uio = xoκ + ϵio, surpressing the

area subscript. The expected utility can be stated as

E
[
max
w

xwκ+ ϵiw

]
= µHΓ + µH · ln

(∑
h

exp

(
xhκ

µH

))

=
∑
o

πo

(
µHΓ + µH · ln

(∑
h

exp

(
xhκ

µH

)))

=
∑
o

πo

µHΓ + xoκ+ µH · ln


∑
h

exp
(

xhκ
µH

)
exp

(
xoκ
µH

)



= µHΓ +
∑
o

πo (xoκ− µH · ln (πo))

Where the first line applies the well know result on the expected utility under a Gumbel

distribution. The second line multiplies by one and the expression is rewritten in line

three and four. The derivation of the expected utility (8) of a Borla Taxis with home

location h follows analogous steps.

A.7.2 Social optimum

This section formally states the social planners problem and details the derivation

of prices p̃ that implement the socially optimal allocations, as stated in Proposition 1 in

Section 7.

Social planner’s problem

The social planner chooses the allocations {π,ϕ,q,λ,J } to maximise welfare Ω,

subject to collection and disposal market clearing, as well as all shares being non-negative
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and summing up to one at the relevant levels of aggregation

max
π,ϕ,q,λ,J

Ω

st. πl,BTN
H
l =

∑
k

∑
m

ϕklmN
BT
k qlm, ∀ l ∈ A (A.1)

πl,oN
H
l = Ql,o, ∀ l ∈ A and o ∈ {F,C} (A.2)

λm =
∑
k

∑
l

ϕklmN
BT
k qlm, ∀m ∈ J (A.3)∑

o

πlo = 1, ∀ l ∈ A (A.4)∑
l

∑
m

ϕklm = 1, ∀ k ∈ H (A.5)

πlo ≥ 0, ∀ l ∈ A and ∀ o ∈ O (A.6)

ϕklm ≥ 0, ∀ k ∈ H ,∀ l ∈ A and ∀ j ∈ J (A.7)

By using the notation {κ̃, µ̃H , ν̃, µ̃C} =
{

κ
|κ1| ,

µH

|κ1| ,
ν
ν1
, µC

ν1

}
considering that κ1 < 0 and

substituting in the constrains (A.1), (A.2), (A.3), and (A.4), the welfare expression can
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be rewritten as

Ω̂ = µ̃HΓ
∑
l

NH
l + µ̃CΓ

∑
k

NBT
k

+
∑
l

∑
k

∑
m

ϕklmN
BT
k qlm

(
κ̃BT + κ̃2fl,BT + κ̃3wl,BT + κ̃4sl,BT − µ̃H ln

(∑
s

∑
t ϕsltN

BT
s qlt

NH
l

))
+
∑
l

NH
l πl,F (κ̃F + κ̃2fl,F + κ̃3wl,F + κ̃4sl,F − µ̃H ln (πl,F ))

+
∑
l

NH
l πl,C (κ̃C + κ̃2fl,C + κ̃3wl,C + κ̃4sl,C − µ̃H ln (πl,C))

+
∑
l

NH
l

(
1−

∑
s

∑
t ϕsltN

BT
s qlt

NH
l

− πl,F − πl,C

)(
κ̃BD + κ̃2fl,BD + κ̃3wl,BD + κ̃4sl,BD

−µ̃H ln

(
1−

∑
s

∑
t ϕsltN

BT
s qlt

NH
l

− πl,F − πl,C

)
− ι

)
−
∑
k

NBT
k

∑
l

∑
m

ϕklm

[
δ

2

(qlm
ϑ

)2
+ ν̃2τklmk + ν̃3Tm + µ̃C ln (ϕklm)

]]

−
∑
m

[
(ζm + ϱm − rm)

∑
k

∑
l

ϕklmN
BT
k qlm + Fm

]
−
∑
l

[
mcl,F N

H
l πl,F + Fl,F

]
−
∑
l

[
mcl,C N

H
l πl,C + Fl,C

]
Note that the all prices have cancelled out from this expression, due to market clearing.

Intuitively, monetary transfers between agents do not affect societal welfare, only changes

in allocations do. Using this rewritten version of the welfare expression, the social plan-

ner’s problem reduces to maximising Ω̂ by choosing the allocations {πF ,πC ,ϕ,q,J }
taking into account constraints (A.5), (A.6), (A.7).

The social planner’s problem can be solved in two steps. In the first step the alloca-

tions {πF ,πC ,ϕ,q} are chosen for a given set of actives sites J . In the second step, the

planner then selects the set of actives sites J that yields the highest welfare.
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First order conditions

Formal collection and communal container. We obtain the following first order

conditions

∂Ω̂

∂πa,F
=NH

a (κ̃F + κ̃2fa,F + κ̃3wa,F + κ̃4sa,F − µ̃H ln (πa,F )− µ̃H −mca,F ) (A.8)

−NH
a (κ̃BD + κ̃2fa,BD + κ̃3wa,BD + κ̃4sa,BD − µ̃H ln (πa,BD)− ι− µ̃H) = 0

∂Ω̂

∂πa,C
=NH

a (κ̃C + κ̃2fa,C + κ̃3wa,C + κ̃4sa,C − µ̃H ln (πa,C)− µ̃H −mca,C) (A.9)

−NH
a (κ̃BD + κ̃2fa,BD + κ̃3wa,BD + κ̃4sa,BD − µ̃h ln (πa,BD)− ι− µ̃H) = 0

Routes. In deriving the first order conditions for the collection routes, constraint (A.5)

needs to be considered. For a given home location h, we thus denote the share choosing

route ha′j′ as function of all other shares ϕha′j′ = 1 −
∑
l ̸=a′

∑
m̸=j′

ϕhlm. Taking this into

account, the first order conditions for collection routes are
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∂Ω̂

∂ϕhaj

=NBT
h qaj (κ̃BT + κ̃2fa,BT + κ̃3wa,BT + κ̃4sa,BT − µ̃H ln (πa,BT ))

−
∑
k

∑
m

ϕkamN
BT
k qam

(
µ̃H

NH
a∑

s

∑
t ϕsatNBT

s qat

NBT
h qaj
NH

a

)
−NH

a

NBT
h qaj
NH

a

(κ̃BD + κ̃2fa,BD + κ̃3wa,BD + κ̃4sa,BD − µ̃H ln (πa,BD)− ι)

+ πa,BD
µ̃HN

BT
h qaj

πa,BD

−NBT
h

(
δ

2

(qaj
ϑ

)2
+ ν̃2τhajh + ν̃3Tj + µ̃C ln (ϕhaj) + µ̃C

)
− (ζj + ϱj − rj)N

BT
h qaj

−

[
NBT

h qa′j′ (κ̃BT + κ̃2fa′,BT + κ̃3wa′,BT + κ̃4sa′,BT − µ̃H ln (πa′,BT ))

−
∑
k

∑
m

ϕka′mN
BT
k qa′m

(
µ̃H

NH
a′∑

s

∑
t ϕsa′tNBT

s qa′t

NBT
h qa′j
NH

a′

)
−NH

a′
NBT

h qa′j′

NH
a′

(κ̃BD + κ̃2fa′,BD + κ̃3wa′,BD + κ̃4sa′,BD − µ̃H ln (πa′,BD)− ι)

+ πa′,BD
µ̃HN

BT
h qa′j′

πa′,BD

−NBT
h

(
δ

2

(qa′j′
ϑ

)2
+ ν̃2τha′j′h + ν̃3Tj′ + µ̃C ln (ϕha′j′) + µ̃C

)
− (ζj′ + ϱj′ − rj′)N

BT
h qa′j′

]
= 0
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which can be further simplified to

∂Ω̂

∂ϕhaj

=qaj

[
κ̃BT + κ̃2fa,BT + κ̃3wa,BT + κ̃4sa,BT − µ̃H ln (πa,BT )

− (κ̃BD + κ̃2fa,BD + κ̃3wa,BD + κ̃4sa,BD − µ̃H ln (πa,BD)− ι)

−

(
ζj + ϱj +

δ
2

( qaj
ϑ

)2
+ ν̃2τhajh + ν̃3Tj + µ̃C ln (ϕhaj)

qaj
− rj

)]

− qa′j′

[
κ̃BT + κ̃2fa′,BT + κ̃3wa′,BT + κ̃4sa′,BT − µ̃H ln (πa′,BT )

− (κ̃BD + κ̃2fa′,BD + κ̃3wa′,BD + κ̃4sa′,BD − µ̃H ln (πa′,BD)− ι)

−

(
ζj′ + ϱj′ +

δ
2

( qa′j′
ϑ

)2
+ ν̃2τha′j′h + ν̃3Tj′ + µ̃C ln (ϕha′j′)

qa′j′
− rj′

)]
= 0 (A.10)

Quantity. The first order conditions for the collection quantity are

∂Ω̂

∂qaj
=
∑
k

NBT
k ϕkaj

(
κ̃BT + κ̃2fa,BT + κ̃3wa,BT + κ̃4sa,BT − µ̃H ln

(∑
s

∑
t ϕsatN

BT
s qat

NH
a

))
+
∑
l

∑
m

ϕkamN
BT
k qam

(
−µ̃H

NH
a∑

s

∑
t ϕsatNBT

s qat

∑
sN

BT
s ϕsaj

NH
a

)

−NH
a

∑
s

NBT
s ϕsaj

NH
a

(
κ̃BD + κ̃2fa,BD + κ̃3wa,BD + κ̃4sa,BD

−µ̃H ln

(
1−

∑
k

∑
l ϕkalN

BT
k qal

NH
a

− πa,F − πa,C

)
− ι

)

+

(
1−

∑
k

∑
l ϕkalN

BT
k qal

NH
a

− πa,F − πa,C

) µ̃H

∑
k

NBT
k ϕkaj

1−
∑

k

∑
l ϕkalN

BT
k qal

NH
a

− πa,F − πa,C


−
∑
k

NBT
k ϕkajδ

qaj
ϑ2

− (ζj + ϱj − rj)
∑
k

NBT
k ϕkaj = 0
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which further simplifies to

∂Ω̂

∂qaj
=κ̃BT + κ̃2fa,BT + κ̃3wa,BT + κ̃4sa,BT − µ̃H ln (πa,BT )

− (κ̃BD + κ̃2fa,BD + κ̃3wa,BD + κ̃4sa,BD − µ̃H ln (πa,BD)− ι)

− δ
qaj
ϑ2

− (ζj + ϱj − rj) = 0 (A.11)

Decentralising the social optimum

In the following we denote the welfare maximising allocations as
{
π̃, ϕ̃, q̃

}
, which

need to satisfy the first order conditions (A.8), (A.9), (A.10), and (A.11). We define

p̃ =
{
p̃BT , p̃F , p̃C , p̃

d
}
as the set of prices that the planner needs to impose to decentralise

the social optimum, that is to achieve {π (p̃) ,ϕ (p̃) ,q (p̃)} =
{
π̃, ϕ̃, q̃

}
, given a set of

disposal sites J . Under these prices p̃, the households choice probabilities follow (2) and

are given by

πao (p̃) =
exp
(
κo + κ1 p̃ao + κ2 fao + κ3wao + κ4 sao

) 1
µH∑

h∈Oa
exp
(
κh + κ1 p̃ah + κ2 fah + κ3wah + κ4 sah

) 1
µH

(A.12)

The route choices of Borla Taxis are governed by (7) and can be expressed as

ϕhaj (p̃) =
exp

(
ν1
(
p̃a,BT − p̃dj + rj

)
qaj (p̃)− C (qaj (p̃)) + ν2τhajh + ν3Tj

) 1
µC∑

(b,k)∈C

exp
(
ν1
(
p̃a,BT − p̃dj + rj

)
qaj (p̃)− C (qaj (p̃)) + ν2τhajh + ν3Tj

) 1
µC

(A.13)

And the quantity choice is analogous to (12) and given by

qaj (p̃) =

(
p̃a − p̃dj + rj

)
ϑ2

δ
(A.14)

In the decentralised social optimum, prices p̃ further adjusts to satisfy market clearing

analogously to (13)

πa,BT (p̃) Na =
∑
k

∑
m

ϕkam (p̃) Nk qam (p̃) (A.15)

Note that in deriving the decentralised optimum, we considered constraints (A.1), (A.2),

(A.3), (A.4), (A.5) in deriving the first order conditions and the remaining constraints

(A.6) (A.7) are satisfied due to the Gumbel-type form of the choice probabilities.
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Formal collection and communal container prices {p̃F, p̃C}. Rearranging the

first order conditions (A.8) and (A.9) leads that

ln

(
π̃a,F
π̃a,BD

)
=

1

µ̃h

[κ̃F + κ̃2fa,F + κ̃3wa,F + κ̃4sa,F −mca,F

− (κ̃BD + κ̃2fa,BD + κ̃3wa,BD + κ̃4sa,BD − ι)]

ln

(
π̃a,C
π̃a,BD

)
=

1

µ̃h

[κ̃C + κ̃2fa,C + κ̃3wa,C + κ̃4sa,C −mca,C

− (κ̃BD + κ̃2fa,BD + κ̃3wa,BD + κ̃4sa,BD − ι)]

Comparing these expressions with (A.12) leads that they coincide if

p̃a,F = mca,F − ι

p̃a,C = mca,C − ι

Disposal prices
{
p̃d
}
. Using that in the decentralised optimum π̃ao = πao (p̃), the

first order condition for the collectors route choice (A.10) can be expressed as

0 =q̃aj

p̃a,BT + ι−

ζj + ϱj +

δ
2

(
q̃aj
ϑ

)2
+ ν̃2τhajh + ν̃3Tj + µ̃C ln

(
ϕ̃haj

)
q̃aj

− rj




− q̃a′j′

p̃a′,BT + ι−

ζj′ + ϱj′ +

δ
2

(
q̃a′j′

ϑ

)2
+ ν̃2τha′j′h + ν̃3Tj′ + µ̃C ln

(
ϕ̃ha′j′

)
q̃a′j′

− rj′




where we substituted out πao (p̃) using their definitions given in (A.12). Rearranging leads

that

ln

(
ϕ̃haj

ϕ̃ha′j′

)
=

1

µ̃C

[
q̃aj (p̃a,BT − ζj − ϱj + ι+ rj)−

δ

2

(
q̃aj
ϑ

)2

− ν̃2τhajh − ν̃3Tj

]

− 1

µ̃C

[
q̃a′j′ (p̃a′,BT − ζj′ − ϱj′ + ι+ rj′)−

δ

2

(
q̃a′j′

ϑ

)2

− ν̃2τha′j′h − ν̃3Tj′

]

Comparing this expression with the one based on (A.13), it follows that they coincide

if

p̃dj = ζj + ϱj − ι (A.16)
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Optimal quantity. Using that in the decentralised optimum π̃ao = πao (p̃), the first

order condition for quantities (A.11) can be expressed as

p̃a,BT + ι− δ
q̃aj
ϑ2

− (ζj + ϱj − rj) = 0

here we substituted out πao (p̃) using their definitions given in (A.12). Rearranging leads

that

q̃aj =
ϑ2

δ
[p̃a,BT − ζj − ϱj + ι+ rj]

Comparing this expression with (A.14), it follows that they coincide if the disposal prices

are given by (A.16) indeed.

Borla Taxi prices {p̃BT}. A closed form solution for p̃BT does not exist. Therefore,

p̃BT needs to be solved for numerically, as the vector of prices satisfying market clearing

(A.15) given the disposal prices (21), formal collection and communal container prices

(22), and choices being governed by (A.12), (A.13), and (A.14).

A.7.3 Extension: Borla Taxi entry

This section presents a model extension where the number of collectors NBT
h living

in each home location h is determined endogenously. This allows for both adjustments

of the distribution of collector across home locations and the total number of collectors

operating in the city.

Different from Section 5.2, collector i maximizes utility by now also choosing where

to live h, in addition to where to work a and where to dispose of waste j. The indirect

utility function is given by

Uihaj = uhaj + θh + ϵihaj (A.17)

where uhaj = ν1Πaj + ν2τhajh + ν3Tj captures the utility of travelling on route hajh to

collect and dispose of waste. The term θh captures any remaining aspects influencing

the utility of living in location h, such as amenities, or the availability of housing and

consumption goods. As the population of collectors is arguably too small to impact these

aspects, we assume θh to be exogenous.

We model the idiosyncratic utility component ϵihaj to now also vary by home location,

leading that the probability that a collector chooses combination haj is given by
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πhaj =
exp
[
uhaj + θh

] 1
µC∑

k,l,m exp
[
uklm + θk

] 1
µC

(A.18)

It follows that the choice probability (7) for the case where the number of collectors

is exogenously determined can be understood as the conditional probability of choosing

route aj given that a collector lives in h.

Using expression (A.18), the number of Borla Taxis in h can be expressed as

NBT
h =

∑
l,m

πhlmN
BT (A.19)

and the expected utility of working as a collector in the city is given by

U
(
NBT

)
= µC Γ + µC ln

[∑
k,l,m

exp
[
uklm + θk

] 1
µC

]
(A.20)

Denoting the outside option of waste collectors as Ū , new Borla Taxis will enter or

exit the market until

U
(
NBT

)
= Ū (A.21)

Given that the observed market is in equilibrium, one can solve (A.19) for θ and

obtain Ū from (A.20).
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